The GPLEX Scanner Generator
(Version 1.1.3 April 201p0

John Gough QUT
April 18, 2010

About GPLEX

Gardens PointEX (gpleX generates scanners based on finite state automatd
generated automata have the number of states minimized by default, and
large number of options for table compression. The default compression s
is chosen depending on the input alphabet cardinality, and almost always ¢
reasonable result. However a large number of options are available for the

tune the behavior if necessary.

The tool implements many of tHeLEX extensions, including such things as st
state stacks.

The generated scanners are designed to interface cleanly with bottom-up
generated by Gardens Point Parser Generagimpg. However,gplexgeneratec
scanners have been successfully used with both handwritten parsers ar
parsers generated OCO/R

1. The

have a
cheme
jives a
Lser to

art-

parsers
)
d with

CONTENTS >

Contents

(I_Introduction to GPLEX | 6
6
1.1 TypicalUsade 6
[2 _Thelnferfaces v v v v it e e e e e 7
11.2.1 ThelColorsScan Interfaceo oL 11

|2 Running the Program 12
2.1 GplexOptions e 12
[3__The Generated Scanner 16
[3.1 Byte-Mode and Unicode-Mope 16
B2 _TheScannerFile 17
3.3 Choosing the Input BufferClass 18
[3.4 HowBufteringWorks 20
B5__MUFIple INPUESOUCES . . . - o o o o oee e e e oo 22
B6 CIass HIETAaICRY o o ot et e e e e 24
B81 TLTimitations« 27

3.9 UsingGPLEXScanners with Other Parsers 27
|4 Advanced Topic$ 28
4.1 [jonInformation 28
4.2 Applications with Multiple Scanngrs 28

3 Stacking Start CONGMIONS - » « « « v v o voo oo e e e e e e oo 30
[d.4 Settingyylvalandyyllod 30
@g.4. elValueType Parameter 31

BA2 TRETSPANTYpPE PArameter . « « o v v oo oo e e 31

4.5 Backtracking Intormatign oo 32
4.6 Choosing Compression Optibns oo vt o .. 33
[o__Errors and Warnings| 37
5.1 Errors e 37
5.2 WarniNgB oo e e e e 41
o __Examples 42
O Word 1 42

O A O B = N L 45

S K d M O . . 45
eCodePageGuesser e 46

6.5 Include Fille Example 47
[7_Note$ 48
[7.1 Moving Fromv1.Otovl.1|0 48
I/.1.1 Performancelssues 48

[7.1.2 Removing Unicode Encoding Limitatigpns 49

1. voiding Name-Clashes with Multiple Scannpers 50

CONTENTS 3

[71.4" CompliancewithrxCop 50

[72 TmplementationNotes 50
[3 LimitationsforVersion1.110 51

4 gGPLEX 51
75 COPYNONL . . . v o o e e e e e e e e e 52
[76 BugReports 52
([T The Input Language| 53
[8__The Input File| 53

8.1 [exical Consideratiol

3.3.1 Using and Namespace Declarations 54
[B3:2_Visibility and Naming DECIarations . « -« .« « « .« 55
8.3.4 Lexical Category Definitiops 56
6.3.5 Character Class Membership Predi¢ates 56
[8.3.6User Character Predicate Declaration o7
8.3./ UserCodeinthe Definitions Seclion. 58
6.3.6 Comments in the Definitions Section 58
[8.3.9 Option Declarations 59
8.4 TheRulesSection 59
[8.4.1 Overview of Pattern Matchipg 59
B42_Overall Syntax O RUIEs SECton 59
BA3 _RUESYNMEX . - « « o o o oo e e 60
3.4.4 R D DES . . e e 61

19 Regular Expressiong 62
[0.1 Concatenation, Alternation and Repefition 62
9.1.1 Definitions e 62
9.1.2 Operator Precedence 63
9.1. RepetitionMarkeys L. 63

......................... 66
024 CharacterClasses o v v v v v it i 66
9.2.5 Character Class Predicétes 6.7
[0.2.6 The Dot Metacharacter 67
9.2.7 ContextMarkels 68

9.2.8 End-Of-FileMarkér 68

CONTENTS 4
110 Special Symbols in Semantic Actions 68
[10.1 Properties of the Matching Text. 68
[10.1.1 TheyytextPropefty 68
[I0.1.2 TheyylengPropefty 68
[I0.I3 TheyyposPropefty/| 69
0.1.4 eyylinePropenty 69

10.2.2 TheyylessMethod\ 69
[[0.23 Theyymore Method 70
[I0.3 Changingthe Start Condition 70
...................... 70

0 YYSTARTProperty 70

S e e 70
10.5 Miscellaneous Methods 71

10.5.1 TheeCHO Method

(T Using Unicode| 72
11 Overvie 72
11.1 Gplex Options for Unicode Scanners 12
. nicode Options for Byte-Mode Scanners 73
|12 Specitying Scanneils 74
[I2I ByteModeScannérs 75
. aracter Class Predicates in Byte-Mode Scanners 16.
12.3 Unicode Mode Scanné
[12.4 Overriding the Codepage Fallback at Application Rurjtime 78
|112.5 Adaptively Setting the Codepage 79
113 Input Buffers| 80
[13.1 String InputBuftefs o oo 80
@32 FileTnputBufferls 81
[V Appendiceg 83
|14 Appendix A: Tableg 84
[14.1 Keyword Commanfls 84
[I4.2 Semantic Action Symbdls oo 85
115 Appendix B: GPLEX Options| 86
[15.1 Informative Options, 86
115.2 Boolean Optios 86
116 Appendix C: Breaking Change$ 88

LIST OF FIGURES 5

List of Figures

o Features of thé&cannelClass

[6 Signatures ofetSourcenethodg L. 10
[/ ___Additional Methods for Scanner Actions 11
|8 Interface to the colorizing scanrier 11
[0 Conceptual diagram of byte-mode Scapner 16
ner 16
[fT OverallOutputFile Structute 17
|12 Signatures obcanButl.GetBuffemethodg 18
[I3 Detailof Character Decodipg 19
[I4Encoding of the example as UTF-8ffile 21
[T5__Encoding of the example as big-endian UTF-T§ file 21

§ aining input textswithywrap| o000 23
[I7BufferContext handlingmethofls 23
18 Nestedincludefilehandiing 24
[0 Standalone Parser Dummy Cade 25

0 eEolStateproperty] oo 25
21 Default Location-InformationClass 28
[22~ Methods for Manipulating the Start Condition Stack 30
23 Location types must implemeierge| 31
[24__Conceptual diagram of scanner with character equivalence ¢lasses 34 .
[25Stafistics foComponent Pascacanners 36
26 Statistics foC#scanner oo 36
[27 " User Code for WordcountExample 44
[28 " User Code for keyword matching example 46
[29 UsercodefomcludeTesexamplg 49
[30 " Tnterface for user character predicdtes 57
31 _Methods for Manipulating the Start Condition Stack 71
ner.............. 4
ner 75

4 Using theGetCodePagenethod 79
..................... 80
.................... 81

etail o aracterDecoding L. 82

Part |
Introduction to GPLEX

1 Overview

This paper is the documentation for telexscanner generator.

Gardens PointEX (gpleX is a scanner generator which acceptiBX-like” spec-
ification, and produces @# output file. The implementation shares neither code nor
algorithms with previous similar programs. The tool does not attempt to implement the
whole of thePOSIXspecification folLEX, however the program moves beyonBX
in some areas, such as support for unicode.

The scanners produce Igplexare thread safe, in that all scanner state is carried
within the scanner instance. The variables that are global in traditidg}are instance
variables of the scanner object. Most are accessed through properties which expose
only a getter.

The implementation ofjplexmakes heavy use of the facilities of the 2.0 version
of the Common Language Runtim€l(R). There is no prospect of making it run on
earlier versions of the framework.

There are two main ways in whidjplexis used. In the most common case the
scanner implements or extends certain types that are defined by the parser on whose
behalf it works. Scanners may also be produced that are independent of any parser, and
perform pattern matching on character streams. In tiigrid-aloné case thegplex
tool inserts the required supertype definitions into the scanner source file.

The code of the scanner derives from three sources. There is invariant code which
defines the class structure of the scanner, the machinery of the pattern recognition en-
gine, and the decoding and buffering of the input stream. These parts are defined in a
“framée file and a ‘buffers file each of which is an embedded resource of gipdex
executable.

The tables which define the finite state machine that performs pattern recognition,
and the semantic actions that are invoked when each pattern is recognized are inter-
leaved with the code of the frame file. These tables are creategplex from the
user-specified*:lex " input file.

Finally, user-specified code may be embedded in the input file. All such code is in-
serted in the main scanner class definition, as is explained in more detail in $§egdtion 3.2.
Since the generated scanner class is declaaitthl it is also possible for the user
to specify code for the scanner class iG#file separate from theEX specification.

If you would prefer to begin by reviewing the input file format, then go directly to
Par1l of this document.

1.1 Typical Usage

A simple, typical application using gplexscanner consists of two parts. A parser is
constructed usingppginvoked with the gplexoption, and a scanner is constructed
usinggplex The parser object always has a prope®gcannet of AbstractScanner
type imported from thQUT.Gppgnamespace (see figyre 3). The scanner specification
file will include the line —

%using ParserNamespace

1 OVERVIEW 7

whereParserNamespacis the namespace of the parser module defined in the parser
specification. Théain method of the application will open an input stream, construct
a scanner and a parser object using code similar to the snippet in Fjgure 1.

Figure 1: Typical Main Program Structure

static void Main(string [] args)

{
Stream file;
/I parse input args, and open input file
Scanner scanner = new Scanner (file);
Parser parser = new Parser (scanner);
parser.Parse();
/land so on ...

}

For simple applications the parser and scanner may interleave their respective error
messages on the console stream. However when error messages need to be buffered
for later reporting and listing-generation the scanner and parser need to each hold a
reference to some shared error handler object. If we assume that the scanner has a field
named Yyhdlr " to hold this reference, the body of the main method could resemble

Figure[2.

Figure 2: Main with Error Handler

ErrorHandler handler = new ErrorHandler ();
Scanner scanner = new Scanner (file);

Parser parser = new Parser (scanner, handler);
scanner.yyhdlr = parser.handler; /I share handler ref.
parser.Parse();

/landsoon ...

1.2 The Interfaces

All of the code of the scanner is defined within a single claSsahnet inside the
user-specified namespace. All user-specified code in the input specification is copied
into the body of this class. The invariant buffering code defines string and file buffering
classes, and allows characters to be decoded by any of the encodings supported by the
.NET framework. For more detail on the buffering options, see seftign 3.3.

For the user ofjplexthere are several separate views of the facilities provided by
the scanner module. First, there are the facilities that are visible to the parser and the
rest of the application program. These include calls that create new scanner instances,
attach input texts to the scanner, invoke token recognition, and retrieve position and
token-kind information.

Next, there are the facilities that are visible to the semantic action code and other
user-specified code embedded in the specification file. These include properties of the
current token, and facilities for accessing the input buffer.

1 OVERVIEW 8

Finally, there are facilities that are accessible to the error reporting mechanisms that
are shared between the scanner and parser.

Each of these views of the scanner interface are described in turn. The special case
of stand-alone scanners is treated in sedtioh 3.6.

The Parser Interface

The parser “interface” is that required by tHACClike parsers generated by the Gar-
dens Point Parser Generatgppg tool. Figurg 3 shows the signatures. This abstract

Figure 3: Scanner Interface GPPG

public abstract class AbstractScanner <TValue, TSpan>
where TSpan : [Merge <TSpan>
{
public TValue yylval;
public virtual TSpan yylloc {
get { return default (TSpan); }
set { /* skip */ }

public abstract int yylex();
public virtual void yyerror(string msg,
params object [] args) {}

base class defines tA®| required by the runtime componentggpg the libraryShift-
ReduceParser.dllThe semantic actions of the generated parser may use the AiPher
of the concreteéScannerclass (Figur¢s), but the parsing engine needs éigtract-
Scanner

AbstractScanners a generic class with two type parameters. The first of these,
TValueis the “SemanticValueTypef the tokens of the scanner. If the grammar speci-
fication does not define a semantic value type then the type defaidts to

The second generic type paramelepanis the location type that is used to track
source locations in the text being parsed. Most applications will either use the parser’s
default typeQUT.Gppg.LexLocatigrshown in Figur¢ 21, or will not perform location
tracking and ignore the field. Sectipn4.1 has more information on the default location
type.

The abstract base class defines two variables through which the scanner passes
semantic and location values to the parser. The first, the figlddr’, is of whatever
“SemanticValueTypehe parser defines. The second, the propeyglldc’, is of the
chosen location-type.

The first method oAbstractScannegylex returns the ordinal number correspond-
ing to the next token. This is an abstract method, which the code of the frame file
overrides.

The second method, the low-level error reporting rougiperror, is called by the
parsing engine during error recovery. This method is provided for backward compata-
bility. The default method in the base class is empty. User code in the scanner is able
to override the emptyyerror. If it does so the default error messages of the shift-
reduce parser may be used. Alternatively the low Igyefror method may be ignored

1 OVERVIEW 9

completely, and error messages explicitly created by the semantic actions of the parser
and scanner. In this case the actions uselierHandler class, thel Spanlocation
objects, and numeric error codes. This is almost always the preferred approach, since
this allows for localization of error messages.

All gppgproduced parsers define an abstract “wrapper” class that instantiates the
genericAbstractScanneclass with whatever type arguments are implied by the *
file. This wrapper class is nam&tanBaseThe inheritance hierarchy for the case of
gppgandgplexused together is shown in figUrg 4. For this example it is assumed that

Figure 4: Inheritance hierarchy of the Scanner class

AbstractScanner
defined in
ShiftReduceParser

AbstractScanner
<TValue, TSpan>

~—— =

ScanBase b MyParser.ScanBase
: AbstractScanner generated by GPPG
when invoked with

<int,LexLocation>
Abstract Class /gplex option

MyLexer.Scanner
generated by
GPLEX

Scanner : ScanBase

Sealed Class

the parser specification has declarédrfamespace MyParser ” and the scanner
specification has declare@thamespace MylLexer ".

ClassScanBasealways defines a default predicate metlygdirapwhich is called
whenever an end-of-file is detected in the input. The default method always returns
true , and may be overridden by the user to support multiple input sources (see Sec-
tion[3.5).

The scanner class extenfisanBas@nd declares a public buffer field of tisean-

Buff type, as seen in Figufé¢ 5ScanBuffis the abstract base class of the stream and
string buffers of the scanners. The important public features of this class are the prop-
erty that allows setting and querying of the buffer position, and the creation of strings
corresponding to all the text between given buffer positions. Adeproperty returns

the current position of the input buffer. TlReeadmethod ofScanBuffreturns the next
buffer element, but is never called by user code. The method is called by the scanner
object'sGetCodemethod, which finalizes the character decoding.

Everygplexconstructed scanner is eithebgte-mode scannar aunicode-mode
scanner Byte-mode scanners define two public constructors, while unicode-mode
scanners define three. The default “no-arg” constructor creates a scanner instance that
initially has no buffer. The buffer may be added later using one oS#tSourceneth-
ods. The other constructors tak&gstem.|O.Strearrgument, with an optionaode
page fallbackargument.

There is a group of four overloaded methods narBetSourcahat attach new
buffers to the current scanner instance. The first of these attaches a string buffer to the

1 OVERVIEW 10

Figure 5: Features of thécannelClass

/I This class defined by gplex
public sealed partial class Scanner : ScanBase {
public ScanBuff buffer;
public void SetSource(string s, int ofst);
}
/I This class defined by gppg, when run with the /gplex option
public abstract class ScanBuff {
public abstract int Read();
public abstract int Pos { get; set; }
public abstract string GetString(int begin, int end);
}

scanner, and is part of thH€olorScaninterface (see Figufg 8). This method provides
the only way to pass a string to the scanner.

Scanners that take file input usually have a file attached by the scanner constructor,
as shown in Figurg]1. However, when the input source is chaBgéSourcevill be
used. The signatures of tietSourcenethod group are shown in Figure 6.

Figure 6: Signatures @etSourcenethods

/I Create a string buffer and attach to the scanner. Start reading from aifset
public void SetSource(string source, int ofst);

/I Create a line buffer from a list of strings, and attach to the scanner
public void SetSource(IList <string > source);

/I Create a stream buffer for a byte-file, and attach to the scanner
public void SetSource(Stream source);

/I Create a text buffer for an encoded file, with the specified default encoding
public void SetSource(Stream src, int fallbackCodePage);

The Internal Scanner API

The semantic actions and user-code of the scanner can access all of the features of
the AbstractScanneand ScanBasesuper types. The frame file provides additional
methods shown in Figurg 7. The first few of these ¥ACC commonplaces, and
report information about the current tokeyyleng, yyposndyytextreturn the length

of the current token, the position in the current buffer, and the text of the token. The
text is created lazily, avoiding the overhead of an object creation when not required.
yytextreturns an immutable string, unlike the usual array or pointer implementations.

1 OVERVIEW 11

Figure 7: Additional Methods for Scanner Actions

public string yytext { get; } //textofthe currenttoken
int yyleng { get; } //length of the currenttoken

int yypos { get; } //bufferposition at start of token

int yyline { get; } //line number at start of token

int yycol { get; } //columnnumber at start of token

void yyless(int n); // move input position to yypos + n

internal void BEGIN(int next);
internal void ECHO(); /I writes yytext to StdOut
internal int YY.START { get; set; }//getand set startcondition

yylessmoves the input pointer backward so that all but the firstharacters of the
current token are rescanned by the next cailydéx

There is no implementation, in this version,ygfmore Instead there is a general
facility which allows the buffer position to be read or set within the input stream or
string, as the case may tecanBuff.GetStringeturns a string holding all text between
the two given buffer positions. This is useful for capturing all of the text between the
beginningof one token anéndof some later tok@]

The final three methods are only useful within the semantic actions of scanners.
The traditionalBEGIN sets the start condition of the scanner. The start condition is
an integer variable held in the scanner instance variable naneentScOrd Be-
cause the names of start conditions are visible in the context of the scannBE-the
GIN method may be called using the names known from the lex source file, as in
“BEGIN(INITIAL)"F] Start conditions are discussed further in Sedtion B.3.3.

1.2.1 The IColorScan Interface

If the scanner is to be used with tMsual Studio SDKas a colorizing scanner for a
new language service, thgppgis invoked with thelabeloption. In this case, as well
as defining the scanner base clagmgalso defines thi&ColorScaninterface. Figurg]8

is this “colorizing scanner” interfaceVisual Studigpasses the source to be scanned to

Figure 8: Interface to the colorizing scanner

public interface IColorScan

{

void SetSource(string source, int offset);
int GetNext(ref int state, out int start, out int end);

INote carefully however, that the default buffering implementation only guarantees that the text of the
current token will be available. If arbitrary strings from the input are requiredaiesistBufferoption must
be used.

°Note however that these names denote constantalues of the scanner class, and must have names
that are validC# identifiers, which do not clash wit@# keywords. This is different to thBOSIX LEX
specification, where such names live in the macro namespace, and may have spellings that include hyphens.

2 RUNNING THE PROGRAM 12

the SetSourcenethod, one line at a time. An offset into the string defines the logical
starting point of the scan. Th&etNextmethod returns an integer representing the
recognized token. The set of valid return values@@tNextmay contain values that

the parser will never see. Some token kinds are displayed and colored in an editor that
are just whitespace to the parser.

The three arguments returned from BetNextmethod define the bounds of the
recognized token in the source string, and update the state held by the client. In most
cases the state will be just the start-condition of the underlying finite state automaton
(FSA), however there are other possibilities, discussed below.

2 Running the Program

From the command lingplexmay be executed by the command —
gplex [optiong filename

If no filename extension is given, the program appends the stiigxg “” to the given
name.

2.1 Gplex Options

This section lists all of the command line options recognizedfigx Options may
be preceded by a ‘' character instead of the ‘/’ character. All of the following options
are recognized by a case-insensitive character matching algorithm.

/babel

With this option the produced scanner class implements the additional interfaces that
are required by th&lanaged Babelramework of theVisual Studio SDKThis option

may also be used witmbparser Note that the Babel scanners may be unsafe unless
the Linicodeoption is also used (see sect[on|3.7).

/caseinsensitive

With this option the produced scanner is insensitive to character case. The scanner does
not transform the input character sequences so thagttextvalue for a token will

reflect the actual case of the input characters. There are some important limitations in
the use of this option in the unicode case. These are discussed $edtion 3.8.

/check

With this option the automaton is computed, but no output is produced. A listing will
still be produced in the case of errors, orlisting is specified. This option allows
syntactic checks on the input to be performed without producing an output file.

/classes

For almost every.EX specification there are groups of characters that always share the
same next-state entry. We refer to these groups as “character equivalence classes”, or
classedor short. The number of equivalence classes is typically very much less that
the cardinality of the symbol alphabet, so next-state tables indexed on the class are

2 RUNNING THE PROGRAM 13

much smaller than those indexed on the raw character value. There is a small speed

penalty for using classes since every character must be mapped to its class before every
next-state lookup. This option produces scanners that use classes. Unicode scanners
implicitly use this option.

/codePageHelp

The code page option list is sent to the console. Any option that contains the strings
“codepage” and either “help” or “?” is equivalent.

/codePageNumber

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the code page with the specified number. If there is
no such code page known to the runtime library an exception is thrown and processing
terminates. Commonly used code pages are 186@1¢), 1201 (nicodeFFFB and
65001 (itf-8).

/codePageName

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the code page with the specified name. If there is no
such code page an exception is thrown and processing terminates.

/codePage:default

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the default code page of the host machine. This
option is the default for unicode scanners, if no code page option is specified.

/codePage:guess

In the event that an input file does not have a unicode prefix, the scanner will rapidly
scan the file to see if it contains any byte sequences that suggest that the file is either
utf-8 or that it uses some kind of single-byte code page. On the basis of this scan result
the scanner will use either the default code page on the host machine, or interpret the
input as autf-8file. See Sectiop 6|4 for more detail.

/codePage:raw

In the event that an input file does not have a unicode prefix, the scanner will use the
uninterpreted bytes of the input file. In effect, only code points from 0 to u+00ff will
be delivered to the scanner.

[frame:frame-file-path

Normally gplex uses an embedded resource as the frame file. This option allows a
nominated file to be used instead of the resource. Using an alternative frame file is
likely to be only of interest tgplexdevelopers.

2 RUNNING THE PROGRAM 14

/help

In this case the usage message is produd@d: Is a synonym for ’help

Mlisting

In this case a listing file is produced, even if there are no errors or warnings issued. If
there are errors, the error messages are interleaved in the listing output.
/noCompress

gplexcompresses its scanner next-state tables by default. In the case of scanners that
use character equivalence classes (see above) it compresses the character class-map by
default in the Uinicodecase. This option turns off both compressions. (See S¢ctipn 4.6

for more detail of compression options.)

/noCompressMap

This option turns off compression of the character equivalence-class map, independent
of the compression option in effect for the next-state tables.

/noCompressNext

This option turns off compression of the next-state tables, independent of the compres-
sion option in effect for the character equivalence-class map table.

/noEmbedBuffers

By default the code for the buffer classes is enclosed within the scanner namespace
in the gplexoutput file. With this option the buffer code is emitted within namespace
QUT.GplexBuffersin a file named GplexBuffers.cs . This is useful for applica-

tions with multiple scanners which may then share the common buffer definitions.

/noFiles

This option declares that the scanner does not require file input, but reads its input
from a string. For suitable cases this reduces the memory footprint of the scanner by
omitting all of the file IO classes.

/noMinimize
By default gplex performs state minimization on tHeFSAthat it computes. This
option disables minimization.

/noParser

By defaultgplexdefines a scanner class that conforms to an interface defined in an
imported parser module. With this optigplex produces a stand-alone scanner that
does not rely on any externally defined scanner super-classes.

2 RUNNING THE PROGRAM 15

/noPersistBuffer

By default file-based buffering igplexscanners uses double buffering but does not
reclaim buffer space during the scanning of large files. This option turns on reclaiming
of buffer space. The option reduces the memory footprint of the scanner on very large
input files, but cannot be used for those applications which re@gamBuff. GetString

to extract strings from the input buffer at arbitrary positions.

/out:out-file-path

Normally gplexwrites an outpuC#file with the same base-name as the input file. With
this option the name and location of the output file may be specified.

lout:—

With this option the generated output is sentGonsole.Out If this option is used
together with yerbosethe usual progress information is senGonsole.Error

/parseOnly

With this option theLEXfile is checked for correctness, but no automaton is computed.

/squeeze

This option specifies that thgplex should attempt to produce the smallest possible
scanner, even at the expense of runtime speed.

/stack

This option specifies that the scanner should provide for the stacking of start conditions.
This option makes available all of the methods described in Sdctibn 4.3.

/summary

With this option a summary of information is written to the listing file. This gives
statistics of the automaton produced, including information on the number of back-
track states. For each backtrack state a sample character is given that may lead to a
backtracking episode. It is the case that if there is even a single backtrack state in the
automaton the scanner will run slower, since extra information must be stored during
the scan. These diagnostics are discussed further in sectjon 4.5.

/unicode

By defaultgplexproduces scanners that use 8-bit characters, and which read input files
byte-by-byte. This option allows for unicode-capable scanners to be created. Using
this option implicitly uses character equivalence classes. (See Sectjon 3.7 for more
detail.)

/utf8default

This option is deprecated. Usg&ddePage:utf-8 " instead. The deprecatech’-
Utf8default " option is equivalent to /codePage:raw "

3 THE GENERATED SCANNER 16

Iverbose

In this case the program chatters on to the console about progress, detailing the various
steps in the execution. It also annotates each table entry G#la@tomaton file with
a shortest string that leads to that state from the associated start state.

Iversion

The program sends its characteristic version string to the console.

3 The Generated Scanner
3.1 Byte-Mode and Unicode-Mode

Every scanner generated plexoperates either ibyte-modgor in unicode-mode
The conceptual form of a byte-mode scanner is shown in Figure 9. In this mode,

Figure 9: Conceptual diagram of byte-mode scanner

Un-encoded
byte value

Nextstate
Function

Current State

the next state of the scanner automaton is determined by the next-state function from
the current input byte and the current state. The bytes of the input stream are used
uninterpreted.

In unicode mode the next state of the scanner automaton is determined by the next-
state function from the currennicode code poirdand the current state. The sequence
of code points may come from a string 8ystem.Chavalues, or from a file. Unicode
code-points have 21 significant bits, so some interpretation of the input is required for
either string or file input. The conceptual form of the scanner is shown in Higlire 10 for
file input. The corresponding diagram fetring input differs only in that the input is a

Next
State

Figure 10: Conceptual diagram of unicode scanner

Nextstate
Function

Character
Decoding

Encoded

Codepoint
byte stream

Current State

sequence oBystem.Charather than a stream of bytes.

Next
State

3 THE GENERATED SCANNER 17

3.2 The Scanner File

The program creates a scanner file which by default is nditeehmecs wherefile-
nameis the base name of the given source file name.

The file defines a classcannefrbelonging to a namespace specified in the lex input
file. This class defines the implementation of the interfaces previously described.

The format of the output file is defined by a template file nargptéxx.frame
User defined and tool generated code is interleaved with this file to produce the final
C# output file. Since Version 1.1.0 gplexthe frame file is an embedded resource in
the tool.

The overall structure of th€# output file is shown in Figure 11. There are seven

Figure 11: Overall Output File Structure

using System;
using System.IO;
using ... ;
user defined using declarations
user defined namespace declaration
{
public sealed partial class Scanner : ScanBase
{
generated constants go here
user code from definitions goes here
int state;
/I lots more declarations
generated tables go here
. /I all the other invariant code
/Il The scanning engine starts here
int Scan() { //Scanis the core of yylex
optional user supplied prolog
[/l invariant code of scanning automaton
user specified semantic actions
optional user supplied epilog
}
user-supplied body code from “usercode” section
}
}
Scanners with embedded buffers place buffer code here

places where user code may be inserted. These are shown in red in the figure. They
are —

* QOptional additional “using” declarations that other user code may require for its
proper operation.

* A namespace declaration. This is not optional.

* Arbitrary code from within the definitions section of the lex file. This code
typically defines utility methods that the semantic actions will call.

3 THE GENERATED SCANNER 18

* Optional prolog code in the body of tf&canmethod. This is the main engine
of the automaton, so this is the place to declare local variables needed by your
semantic actions.

* User-specified semantic actions from the rules section.

* QOptional epilog code. This actually sits insiddimally clause, so that all exits
from the Scanmethod will execute this cleanup code. It might be important to
remember that this code execusdter the semantic action has saieturn "

* Finally, the “user code” section of the lex file is copied into the tail of the scanner
class. In the case of stand-alone applications this is the place whakc“
static void Main " will appear.

As well as these, there is also all of the generated code inserted into the file. This may
include some tens or even hundreds of kilobytes of table initialization. There are actu-
ally several different implementations tanin the frame file. The fastest one is used
in the case of lexical specifications that do not require backtracking, and do not have
anchored patterns. Other versions are used for every one of the eight possible com-
binations of backtracking, left-anchored and right-anchored pattgplex statically
determines which version tattiefine " out.

Note however that th&cannerclass is markegartial . Much of the user code
that traditionally clutters up the lex specification can thus be moved into a separate
scan-helper file containing a separate part of the class definition.

3.3 Choosing the Input Buffer Class

Scanner code interacts with a buffer object of 8mmnBuffclass. ScanBuffis an ab-
stract, public class. The concrete classes derived 8camBuffare all private. Buffers
of the derived classes are instantiated by calling a static factory m&itemBuff.Get-
Buffer. There are four overloads of this method, as shown in Figure 12

Figure 12: Signatures @canBuff.GetBuffanethods

/I Create a string buffer.
public static ScanBuff GetBuffer(string source);

/I Create a line buffer from a list of strings
public static ScanBuff GetBuffer(IList <string > source);

/I Create a BuildBuffer for a byte-file
public static ScanBuff GetBuffer(Stream source);

/I Create a BuildBuffer for an encoded file, with the specified default encoding
public static ScanBuff GetBuffer(Stream source,
int fallbackCodePage);

There are three concrete implementations of the absSeamBuffclass ingplex
There are two string input buffer classes and BugldBuff class that handles all file
input. The buffer code is invariant, and is either emitted as the separate source file

3 THE GENERATED SCANNER 19

GplexBuffers.cer is embedded in the scanner source file. This behavior is controlled
by the/noEmbedBuffersption flag. The default is that buffer code is embedded.

The File Input Buffers

The left-most function box in figurfe 10 expands for file input as shown in Figure 13.
The tranformation from the input byte stream to the sequence of unicode code points
is performed in two steps.

Figure 13: Detail of Character Decoding

String-
Builder
buffer

Character
Decoding

Surrogate
pair handling

Encoded
byte stream

Codepoint

First, the byte sequence in the file is decoded into a sequence of valuesiodithe
type. The decoding is performed Bystem.Globalizatiomethods from theNET base
class libraries.

The sequence ahar values are held in a buffer &tringBuilderclass. The char-
acter index in this buffer is the value which is used as the abstract “input position”
attribute of the recognized tokens.

Finally, the unicode code points are extracted from the buffer by the scanning en-
gine’s GetCodemethod. This method interprets any surrogate pairs, and returns an
integer value to the automaton.

The structure, as shown in the figure, is invariant for all file input. However the
semantics of the two processing blocks are variable. For all forms of file input, the
scanner opens a file stream with code equivalent to the following —

FileStream file = new FileStream (name, FileMode .Open);
Scanner scnr = new Scanner ();
scnr.SetSource(file,)

The code of thé&scannerclass that is emitted bgplexis customized according to the
/unicodeoption. If the unicode option is not in force the scann&tanBuffobject

is instantiated by calling the stream-argument versioB@fSourcthird method in
figure[§). In this case the buffer will have an empty character decoder that simply
reads single bytes and returns the corresponcliag value. For the byte-mode case
surrogate pairs cannot arise, so the second processing block is empty also.

If the unicode option is in force, the two-argument overloadSetSourcglast
method in figur¢ 6) will be called. This version 8&tSourceeads the first few bytes
of the stream in an attempt to find a valid unicode prefi©M).

If a valid prefix is found corresponding toldTF-8 file, or to one or othetJTF-

16 file formats, then a correspondir@reamReadeobject is created. If no prefix is
found, then the encoding of the character decoder will be determined frogptbe
“/codePage: " option. In the event that no code page option is in force the default
code page for the host machine is chosen.

Note that the choice of alphabet cardinality for the scanner tables is determined at
scannerconstructiontime, based on the value of thenicodeoption. The choice of
buffer implementation, on the other hand, is determinedrime when the input file
is opened. Itis thus possible as a corner case that a unicode scanner will open an input
file as a byte-file containing only 8-bit characters. The scanner will work correctly,

3 THE GENERATED SCANNER 20

and will also work correctly with input files that contain unicode data in any of the
supported formats.

String Input Buffers

If the scanner is to receive its input as one or more string, the user code passes the input
to one of theSetSourcenethods. In the case of a single string the input is passed to the
method, together with a starting offset value —

public void SetSource(string s, int ofst);

This method will create a buffer object of tisringBufftype. Colorizing scanners for
Visual Studiaalways use this method.

An alternative interface uses a data structure that implementigtestring >
interface —

public void SetSource(IList <string > list);

This method will create a buffer object of théneBuff type. It is assumed that each
string in the list has been extracted by a methodRkadLinghat will remove the end

of line marker. When the end of each string is reached the bRéadmethod will
report a \n ’ character, for consistency with the other buffer classes. In the case that
tokens extend over multiple strings in the lstffer.GetStringwill return a string with
embedded end of line characters.

3.4 How Buffering Works

The scanning engine thgplexproduces is a finite state automathrS@ﬁ This FSA
deals with code-points from either tlBgyteor Unicodealphabets, as described in sec-
tion[3.1.

Files containing character data may require as little as one byte to encode a unicode
code-point, or as many as four bytes in the worst case of a legal unicode code-point in
anutf-8file. The StreamReadewnbject that decodes the bytes of the file suppltes
values to thestringBuilderbuffer structure. Some instances of stream readers encap-
sulate state, and do not provide a mapping from code point index to file byte-position.
As a consequence the index in theffer must be used as a proxy for file position. It
follows that encoded input streams are only seekable withirsthiagBuilderbuffer
structure. For those applications which need to GaltStringon arbitrary buffer loca-
tions, the (defaultjpersistBufferoption must be used to prevent reclaiming of buffer
space.

Strings containing character data from the full unicode alphabet may require two
char values to encode a single code-point. Decoders basethan-buffers detect
surrogate characters and read a second value when needed.

Finally, it should be noted that textual data exported from the scanner, such as
yytext are necessarily @dystem.Stringype. This means that if the sequence of code-
points contains points beyond the 64k boundary (that is, not fronBtséc Multi-
lingual Plang those points must be folded back into surrogate pairgytextand
buffer.GetSource

3(Note for the picky read@iell, the scanner igsuallyanFSA However, the use of thestack option
allows state information to be stacked so that in practice gptgxgenerated recognizers can have the power
of a push-down automaton.

3 THE GENERATED SCANNER 21

An example

Suppose an input text begins with a character sequence consisting of four unicode
characters:\u0061 ’, ‘\uOODF ’, ‘\u03CO0 ’, ‘\UOOO100AA '. These characters are:
lower case letterd, Latin lower casesharp sas used in German, Greek lower case
pi, and the Linear-B ideogram forgarment. For all four characters the predicate
IsLetteris true so the four characters might form a programming language identifier in
a suitably permissive language.

Figurg 14 shows what this data looks like as a UTF-8 encoded file. Fighre 15 shows
what the data looks like as a big-endian UTF-16 file. In both cases the file begins with a

Figure 14: Encoding of the example as UTF-8 file
(prefix) —a B T =)
BF BB/ BF|61]|C3|9F|CF|80|F1 80|82 |AA

yytext = “alRm\uD800\uDCAA’

Figure 15: Encoding of the example as big-endian UTF-16 file
(prefix) a 13 o B
FE| FF]00| 61100 DF|03|CO|D8 |00 |DC|AA

yytext = “alRm\uD800\uDCAA’

representation of the file prefix characteifeff . The encoded form of this character
occupies three bytes in a UTF-8 file, and two in a UTF-16 file. Reading this prefix
allows the scanner to discover in which format the following data is encoded.

The UTF-8 file directly encodes the code-points using a variable-length represen-
tation. This example shows all encoded lengths from one to four. The UTF-16 file
consists of a sequence eéhort values, and thus requires the use of a surrogate pair
for the final code-point of the example, since this has more than sixteen significant bits.

In every case the sequence of code-points delivered té-8#ewill be: 0x61,

Oxdf, 0x3c0, 0x100aa . Theyytextvalue returned by the scanner is the same in
each case, using the same surrogate pair as in the UTF-16 file. For string input, the
input string would be exactly the same as for the big-endian UTF-16 case, but without
the prefix code.

Files Without Prefix

The case of text files that do not have a prefix is problematic. What should a unicode
scanner do in the case that no prefix is found? In version 1.1gPlekthe decision is
made according to thiallback code pagsetting.
The default setting for the fallback code paggpfexgenerated scanners is to read
the input byte-by-byte, and map the byte-values to unicode using the default code page

3 THE GENERATED SCANNER 22

of the host machine. Other possible fallbacks are to use a specified code page, to use
the byte-value uninterpreted (“raw”), or to rapidly scan the input file looking for any
characteristic patterns that indicate the encoding.

At scanner generation time the user may specify the required fallback behavior.
Generated scanners also contain infrastructure that allows the scanner’s host applica-
tion to override the generation-time default. This overriding may be done on a file-by-
file basis.

A complete treatment of the unicode option, including the treatment of fallback
code pages is detailed in Pari Ill of this document.

3.5 Multiple Input Sources

There are two common scenarios in which multiple input sources are needed. The
first occurs when multiple input sources are treated as though concatenated. Typically,
when one input source is exhausted input is taken from the next source in the sequence.

The second scenario occurs in the implementation of “include files” in which a
special marker in the current source causes input to be read from an alternative source.
At some later stage input may again be read from the remaining text of the original
source.

gplexincludes facilities to enable the encoding of both of these behaviors, and
examples of both are included in Sectjgn 6.

Whenever an end-of-input event is found by the scanB&f processing is in-
voked. If there is an explicit user action attached to Ht@F-event for the current
start-state then that specified action is executed. If there is no such action, or if the
specified action completes without returning a token value, then the d&f@itac-
tion is executed. The default action calls the predigaterap). If yywrapreturns
true the call toyylexwill return Tokens.EORhus causing the parser to terminate. If,
on the other hand, the predicate retufiise then scanning continues.

The ScanBaseslass contains a default implementationygfvrap which always
returnsrue . Users may override this method in thBitannerclass. The user-supplied
yywrap method will determine whether there is further input to process. If so, the
method will switch input source and retutaise ['] If there is no further input, the
user-suppliegyywrapmethod will simply returrtrue .

Chaining Input Texts

When input texts are chained together, flysvrap method may be used to manage
the buffering of the sequence of sources. A structured way to do this is to place the
texts (filenames, or perhaps strings) in a collection, and fetch the enumerator for that
collection. Figur¢ 16 is a template for tigwrapmethod. The code for creation and
initialization of the new input buffer depends on the buffer class that is appropriate for
the next input text. In the case ofsdringBuffa call to the firsiSetSourcenethod —

public void SetSource(string str, int ofst);
does everything that is required.
The case of a file buffer is slightly more complicated. The file stream must be

created, and a new buffer allocated and attached to the scanner. For a byte-stream the
following code isalmostsufficient.

“Beware that returning falseithout replacing the input source is yet another way of making a scanner
hang in a loop.

3 THE GENERATED SCANNER 23

Figure 16: Chaining input texts witpywrap

protected override bool yywrap() {
if (enumerator.MoveNext()) { /l'ls there more input to process?
SetSource(...) /I Choice of four overloads here
return false
} else
return true ; // And cause yylex to return EOF
}
SetSource(new FileStream (filename, FileMode .Open));

Of course, sensible code would open the file withitya block to catch any exceptions.
In the unicode case, a call to the fourth method in Fijlire 6 will create a buffer for
an encoded text file.

The BufferContext Class

Switching input sources requires replacement obiliéer object of the executing scan-
ner. When a new input source is attached, some associated scanner state variables need
to be initialized. The buffer and associated state values fornBtlierContext It is
values of this type that need to be saved and restored for include-file handling.
There are predefined methods for creating valueBusferContextype from the
current scanner state, and for setting the scanner state from a suppffedContext
value. The signatures are shown in Figuré 17. In cases where include files may be

Figure 17: BufferContext handling methods

/I Create context from current buffer and scanner state
BufferContext MKkBuUffCtx() { .. }

/I Restore buffer value and associated state from context
void RestoreBuffCtx(BufferContext value) { .. }

nested, context values are createdMkBuffCtxand are then pushed on a stack. Con-
versely, when a context is to be resunfisektore BuffCtis called with the popped value
as argument.

The BufferContextype is used in the same way fall types of buffer. Thus it is
possible to switch from byte-files to unicode files to string-input in an arbitrary fash-
ion. However, the creation and initialization of objects of the correct buffer types is
determined by user code choosing the appropriate overlo8dt&ourcéo invoke.

Include File Processing

If a program allows arbitrary nesting of include file inclusion then it is necessary to
implement a stack of savelfferContextecords. Figurg 18 is a template for the user
code in such a scanner. In this case it is assumed that the pattern matching rules of

3 THE GENERATED SCANNER 24

Figure 18: Nested include file handling

Stack <BufferContext > bStack = new Stack <BufferContext — >();
private void Trylnclude(string filename) {
try {
BufferContext savedCtx = MkBUffCtx();
SetSource(new FileStream (filename, FileMode .Open));
bStack.Push(savedCtx);
} catch { .. }; /I Handle any 10 exceptions
}
protected override bool yywrap() {
if (bStack.Count == 0) return true;
RestoreBuffCtx(bStack.Pop());
return false ;
}

the scanner will detect the file-include command and parse the filename. The semantic
action of the pattern matcher will then c@llyinclude

This template leaves out some of the error checking detail. The complete code of a
scanner based around this template is shown in the distributed examples.

3.6 Class Hierarchy

The scanner file produced lgplexdefines a scanner class that extends an inherited
ScanBaselass. Normally this super class is defined in the parser namespace, as seen
in Figure[4. As well as this base class, the scanner relies on several other types from
the parser namespace.

The enumeration for the token ordinal values is defined inftke@nsenumeration
in the parser namespace. Typical scanners also rely on the presenda@rétandler
class from the parser namespace.

Stand-Alone Scanners

gplexmay be used to create stand-alone scanners that operate without an attached
parser. There are some examples of such use iBxaeplesection.

The question is: if there is no parser, then where does the cogpl@tfind the
definitions ofScanBasand theTokensnumeration?

The simple answer is that thyplexx.framdile contains minimal definitions of the
types required, which are activated by theparseroption on the command line or in
the lex specification. The user need never see these definitions but, just for the record,
Figure[19 shows the code.

Note that mention ofAbstractScanneis unecessary, and does not appear. If a
standalone, colorizing scanner is required, tgptexwill supply dummy definitions
of the required features.

3 THE GENERATED SCANNER 25

Figure 19: Standalone Parser Dummy Code

public enum Tokens {
EOF = 0, maxParseToken = int .MaxValue
/I must have just these two, values are arbitrary

}
public abstract class ScanBase {

public abstract int yylex();

protected virtual bool yywrap() { return true ; }
}

Colorizing Scanners andmaxParseToken

The scanners produced lgplexrecognize a distinguished value of tfiekensenu-
meration namedrhaxParseTokéen If this value is defined, usually in thgppginput
specification, thegrylexwill only return values less than this constant.

This facility is used in colorizing scanners when the scanner has two callers: the
token colorizer, which is informed dll tokens, and the parser which may choose to
ignore such things as comments, line endings and so on.

gplexuses reflection to check if the special value of the enumeration is defined. If
no such value is defined the limit is setitdo .MaxValue .

Colorizing Scanners andManaged Babel

Colorizing scanners intended for use by Managed Babeframework of theVisual

Studio SDKare created by invokingplex with the babeloption. In this case the

Scannerclass implements thEColorScaninterface (see figurg| 8), argplexsupplies

an implementation of the interface. TBeanBaselass also defines two properties for

persisting the scanner state at line-ends, so that lines may be colored in arbitrary order.
ScanBaselefines the default implementation of a scanner propEdiState that

encapsulates the scanner state inrB2. The default implementation is to identify

EolStateas the scanner start state, described below. F[gyre 20 shows the definition

in ScanBase gplexwill supply a final implementation o€urrentScbacked by the

Figure 20: TheEolStateproperty

public abstract class ScanBase {
// Other (non-babel related) ScanBase features
protected abstract int CurrentSc { get; set; }

/I The currentScOrd value of the scanner will be the backing field for CurrentSc

public virtual int EolState {
get { return CurrentSc; }
set { CurrentSc = value ; } }

3 THE GENERATED SCANNER 26

scanner state fieldurrentScOrdthe start state ordinal.

EolStates a virtual property. In a majority of applications the automatically gener-
ated implementation of the base class suffices. For example, in the case of multi-line,
non-nesting comments it is sufficient for the line-scanner to know that a line starts or
ends inside such a comment.

However, for those cases where something more expressive is required the user
must overrideEolStateso as to specify a mapping between the internal state of the
scanner and thint32 value persisted byisual Studio For example, in the case of
multi-line, possibly nested comments a line-scanner must knowdeapthe comment
nesting is at the start and end of each line. The user-supplied overfa#Sthtemust
thus encode both théurrentScvalueanda nesting-depth ordinal.

3.7 Unicode Scanners

gplexis able to produce scanners that operate over the whole unicode alphabet. How-
ever, theLEX specification itself is always an 8-bit file.

Specifying a Unicode Scanner

A unicode scanner may be specified either on the command line, or with an option
marker in theLEX file. Putting the option in the file is always the preferred choice,
since the need for the option is a fixed property of the specification. It is an error to
include character literals outside the 8-bit range without specifyingitieddeoption.
Furthermore, the use of the unicode option implies theesseoption. Itis an error
to specifyunicodeand then to attempt to specifgydClasses
Unicode characters are specified by using the usual unicode escape formats
and\U xxxxxxxxwherex is a hexadecimal digit. Unicode escapes may appear in literal
strings, as primitive operands in regular expressions, or in bracket-delimited character
class definitions.

Unicode Scanners and the Babel Option

Scanners generated with thabeloption should always use thanicodeoption also.
The reason is that although th&X specification might not use any unicode literals, a
non-unicode scanner will throw an exception if it scans a string that contains a character
beyond the latin-8 boundary.

Thus it is unsafe to use the babel option without the unicode option unless you can
absolutely guarantee that the scanner will never meet a character that is out of bounds.
gplexwill issue a warning if this dangerous combination of options is chosen.

Unicode Scanners and the Input File

Unicode scanners that read from strings use the sammegBuff class as do non-
unicode scanners. However, unicode scanners that read from filestreams must use
a buffer implementation that reads unicode characters from the underlying byte-file.
The current version supports any file encoding for which.MIET library supplies a
StreamReader

When an scanner object is created with a filestream as argument, andittealée
option is in force, the scanner tries to read an encoding prefix from the stream. An
appropriateStreamReadenbject is created, and attached to a buffer ofBaddBuffer

3 THE GENERATED SCANNER 27

class. If no prefix is found the input stream position is reset to the start of the file and
the encoding setting of the stream reader will depend ofetlEack code pagsetting.

3.8 Case-Insensitive Scanners

The use of thécaselnsensitiveption causegplexto generate a case-insensitive scan-
ner. In effect, the option ensures that the same accept state will be reached by every
case-permuted version of each input that reaches that state.

indexltalyytext When a case-insensitive scanner reads input, it does not transform
the input characters. This means thatyiigextstrings will preserve the original casing
in the input.

Scanners that rely on a user-supplied helper method for keyword recognition will
need to ensure that the helper method performs its own case-normalization.

3.8.1 Limitations

There are a few things to consider if you use the case-insensitive option for a unicode
scannergplextransforms the input specification on a character by character basis using
the .NET ToUpperand ToLowermethods. These functions are necessarily culture-
sensitive, andjplexuses the culture setting of the machine on which it is running. If
this is different to the culture setting on which the generated scanner runs then there
may be slightly different results. As well, there are examples where case transformation
is inherently inaccurate because, for example, a given lower case character transforms
into two upper case characters.

Characters outside thmasic multilingual plangthat is, code points that require the
use of surrogate pairs ohar values, do not even get checked for case.

Finally, it should be noted that the construction of character equivalence classes for
specifications that include large unicode character sets is computationally intensive.
Thus specifications that include sets suclii:&dentifierStartCharacter:]] ,
with its 90 000+ elements may add several seconds to the scanner generation time.
However, thegenerated scannewill run at the same speed as the corresponding case-
sensitive version.

3.9 UsingGPLEX Scanners with Other Parsers

When gplexscanners are used with parsers that offer a different interface to that of
gppg some kind of adapter classes may need to be manually generated. For example
if a parser is used that is generateddppgbut not using the fgpleX command line
option, then adaptation is required. In this case the adaptation required is between
the rawAbstractScanneclass provided byhiftReduceParseand theScanBaselass
expected bygplex

A common design pattern is to have a tool-generated parser that crqzesah
parser class. In this way most of the user code can be placed in a separate “parse
helper” file rather than having to be embedded in the parser specification. The parse
helper part of the partial class may also provide definitions for the exp&cimaBase
class, and mediate between the calls made by the parser addPthafered by the
scanner.

4 ADVANCED TOPICS 28

4 Advanced Topics

4.1 Location Information

Parsers created lgppghave default actions to track location information in the input
text. Parsers define a clalsexLocation that is the default instantiation of tfieSpan
generic type parameter. The default type is simply mapped to the text span format used
by Visual Studio

The parsers call the merge method at each reduction, expecting to create a loca-
tion object that represents an input text span from the start of the first symbol of the
production to the end of the last symbol of the productigmppg users may substi-
tute other types for the default, provided that they implement a suitAbtgemethod.
Sectior] 4.4.p discusses the non-default alternatives. Higlire 21 is the definition of the
default class. If gplexscanner ignores the existence of the location type, the parser

Figure 21: Default Location-Information Class

public class LexLocation . IMerge <LexLocation >
{

public int sLin; // Startline

public int sCol; // Start column

public int eLin; //Endline

public int eCol; // End column

public LexLocation() {}

public LexLocation(int sl; int sc; int el; int ec)
{ sLin=sl; sCol=sc; eLin=el; eCol=ec; }

public LexLocation Merge(Lexlocation end) {
return new LexLocation (sLin,sCol,end.eLin,end.eCol);

}

will still be able to access some location information usingylene, yycolproperties,
but the default text span tracking will do notl‘{ﬁlg
If a gplexscanner needs to create location objects for the parser, then it must do it
for all tokens, otherwise the automatic text-span merging of the parser will not work.
The logical place to create the location objects is in the epilog of the scan method. Code
after the final rule in the rules section of a lex specification will appearfimady
clause in th&scanmethod. For the default location type, the code would simply say —
yylloc = new LexLocation (tokLin,tokCol,tokELin,tokECol)

4.2 Applications with Multiple Scanners

Applications that use multiplgplexgenerated scanners have a variety of possible
structures. First of all, there is the option of placing each of the scanners in a sepa-
rate .NET assembly, perhaps shared with the associated parser. It is also possible to
place all of the scanners (and parsers) in the same assembly.

5The parser will not crash by trying to callergeon a null reference, because the default code is guarded
by a null test.

4 ADVANCED TOPICS 29

There are two mechanisms that may be used to avoid name-clashes between the
tool-generated types. The code of each scanner may be placed within a distinct names-
pace so that the fully qualified names of the types are distinct. Alternatively, the default
names of the token, scanner and scanner base classes may be overridden to make the
names distinct, even within the same namespace. The declarations that override the
default type names are detailed in Secfion .3.2.

A further consideration is the placement of the buffer code. The scanner base class
and the generated scanner are specialized by the choice of type-arguments and input
grammar. By contrast the buffer code is invariant forgglexgenerated scannE}s
For applications with a single scanner it seems harmless to embed the buffer code in
the scanner namespace, and this isghlexdefault. For applications with multiple
scanners itis possible to embed a separate copy of the buffer code within each scanner,
at the cost of some code duplication. However, it is probably better to useBrabed-
Buffersoption and access a single copy of the buffer code fronQti@.GplexBuffers
namespace.

Scanners in Separate Assemblies

If each scanner is placed in a separate assembly then the issue of name-clashes may
be removed from consideration by limiting the visibility of the scannAP3 classes.

A possible structure would be to have the external footprint of each assembly limited

to a thin wrapper which initializes and invokes an otherwise inaccessible parser and
scanner. In this case the buffer code may be shared from within some other assembly.
If the buffer code is embedded, the scanner namespaces must be distinct, since the
buffer types are public.

Scanners in the Host Assembly

If all the scanners are placed in the same assembly, assumed to be the same assembly
as the host, then the visibility of the scanner classes shouldideal . As be-
fore, the scanner classes are dis-ambiguated either by declaring them within differing
namespaces, or by overriding the default naming of types.

If the buffer class definitions are embedded then the scanmesreside in differ-
ent name spaces. Even so, some unnecessary code duplication will occur. This may be
eliminated by using the (non-defauttpEmbedBuffersption.

In summary: to place all scanners in the main application assembly, generate each
scanner with the (non-defaulijternal visibility option. Each scanner should be
generated with the (non-defautipEmbedBuffereption.

An Example: Multiple Scanners in GPPG

There are two scanners in tgppgcode base. One is the main scanner which works on
behalf of agppggenerated parser. The other is a specialized “action scanner” which
is used to process and error-check text spans that contain semantic actions. The action
scanner has no associated parser.

Both of the scanners are placed in the same namesQatEGPGen.LexersThe
main scanner declares internal visibility but retains the default type-names for the scan-

6File buffering is specialized according to the file encoding, but this specialization happsrenaer
runtime not at scanner generation time.

4 ADVANCED TOPICS 30

ner class and the scanner base class. The token enumeration is reflakegtifi both
“gppg.y ”and “gppg.lex "

The action scanner renames the scanner clasdad®hScannéer the scanner base
class as ActionBasg and the token enumeration a&¢tionTokeih

Both scanner specifications use titEmbedBuffereption, with the shared buffer
code placed in th&plexBuffers.csource file.

4.3 Stacking Start Conditions

For some applications the use of the standard start condition mechanism is either im-
possible or inconvenient. The lex definition language itself forms such an example,
if you wish to recognize th€# tokens as well as the lex tokens. We must have start
conditions for the main sections, for the code inside the sections, and for comments
inside (and outside) the code.

One approach to handling the start conditions in such cases is tcstesekaf start
conditions, and to push and pop these in semantic actgpiexsupports the stacking
of start conditions when thestack " command is given, either on the command line,
or as an option in the definitions section. This option provides the methods shown in
Figure[22. These are normally used together with the starBEB@IN method. The

Figure 22: Methods for Manipulating the Start Condition Stack

/I Clear the start condition stack
internal void yy clear _stack();

/I Push currentScOrd, and set currentScOrd to “state”
internal void yy _push _state(int state);

/I Pop start condition stack into currentScOrd
internal int yy _pop _state();

/I Fetch top of stack without changing top of stack value
internal int yy _top _state();

first method clears the stack. This is useful for initialization, and also for error recovery
in the start condition automaton.

The next two methods push and pop the start condition values, while the final
method examines the top of stack without affecting the stack pointer. This last is useful
for conditional code in semantic actions, which may perform tests such as —

if (yy _top _state() == INITIAL) ...

Note carefully that the top-of-stack state is not the current start condition, but is the
value that willbecomehe start condition if “pop” is called.

4.4 Settingyylval and yylloc

Parsers constructed by tools ligppghave built-in mechanisms that allow the semantic
values and location values to be evaluated as the input text is parsed. The types of these
values are th&ValueandT Spartypes that parameterize the gen&hiftReduceParser

4 ADVANCED TOPICS 31

class. These same types are the type parameters of the g&bsftiactScanneclass,
from which allgplexscanner classes are derived.

The built-in mechanisms of the parser facilitate the computatioayothesized
attributesof the (virtual) derivation tree that such parsers trace out during parsing.
That is to say, the values at each interior node of the tree are computed from the values
of that node’s immediate children. The starting points of all such calculations are the
values of the leaf nodes, which represent the tokens supplied by the scanner.

When the scannergylexmethod is called it recognizes a pattern, and returns an
integer value corresponding to one of the values ofTilkensenumeration. For those
applications that need more information than the bare integer the additional information
must be passed in the two scanner “variablgdval of type TValueandyylloc of type
TSpan

4.4.1 TheTValue Type Parameter

Not all parsers need to define a semantic value type. And even for those applications
that do need semantic values from the scanner, not all tokens have meaningful attribute
information.

Consider theRealCalcexample distributed with thgppgtool. This is a gram-
mar which recognizes infix arithmetic arithmetic. The tokensdigé, letter, left and
right parentheses and the four operators. The operators and the parentheses have no
attributes, and do not sgylval. Only the lexical categoriedigit andletter have se-
mantic values oint andchar type respectively. The parser wants to use the semantic
value type to compute the expression value in, so the final semantic value type for this
example is a “union” with an integer, character, and floating point double variant.

As described in sectidn 4.1, if an application uses location information it should be
produced forall tokens. Theyylloc-setting code is thus naturally placed in the epilog
of the scannerscanmethod. However, since only a sub-set of tokens have seman-
tic information associated with them tgglvalsetting code is placed in the semantic
actions of those patterns of the lexical specification that need it.

4.4.2 TheTSpanType Parameter

The TSpantype parameter is used to hold location information, and must implement
thelMergeinterface of Figurg 23. In the absence of an explicit declaration of a location

Figure 23: Location types must impleméhterge

public interface IMerge <YYLTYPE> {
YYLTYPE Merge(YYLTYPE last);

}

type, the default typeexLocations used.

If an application needs a more elaborate location type than the default, then the
name of the new type is declared in the parser specification. For example, the parsers
in bothgplexandgppgrely on a different location typé,exSpanwhich includes buffer
position values as well as line and column information. TeeSpartype has a method
which is able to extract all of the input text of a span as a string value. It makes no sense

4 ADVANCED TOPICS 32

to do this with ayylloc value (it would just be a roundabout way of gettingexy, but
the merged location value of a production right-hand-side will exafaif the text of
that pattern.

4.5 Backtracking Information

When the fsummary " option is sent tagplexthe program produces a listing file with
information about the produced automaton. This includes the number of start condi-
tions, the number of patterns applying to each condition, the numhi¢F8Astates,
DFSAstates, accept states and states that require backup.

Because an automaton that requires backup runs somewhat more slowly, some
users may wish to modify the specification to avoid backup. A backup state is a state
that is an accept state that contains at leastartéransition that leads to a non-accept
state. The point is that if the automaton leaves a perfectly good accept state in the
hope of finding an even longer match it may fail. When this happens, the automaton
must return to the last accept state that it encountered, pushing back the input that was
fruitlessly read.

It is sometimes difficult to determine from where in the grammar the backup case
arises. When invoked with théstmmary " option gplexhelps by giving an example
of a shortest possible string leading to the backup state, and gives an example of the
character that leads to a transition to a non-accept state. In many cases there may be
many strings of the same length leading to the backup state. In suchgmeesies
to find a string that can be represented without the use of character escapes.

Consider the grammar —

foo |

foobar |

bar { Console .WriteLine(" keyword " + yytext); }

If this is processed with the summary option the listing file notes that the automaton
has one backup state, and contains the diagnostic —

After <INITIAL>"foo" automaton could acceptdo ” in state 1

— after b’ automaton is in a non-accept state and might need to backup
This case is straightforward, since after reading “foo” and seeing a ‘b’ as the next
character the possibility arises that the next characters might not lE}a “ar”

In other circumstances the diagnostic is more necessary. Consider a definition of
words that allows hyphens and apostrophes, but not at the ends of the word, and not
adjacent to each other. Here is one possible grammar —

alpha [a-zA-Z]
middle ([a-zA-Z][\-1][a-zA-Z])
%%
{middle}+{alpha} { ..
For this automaton there is just one backup state. The diagnostic is —

After <INITIAL>"AA" automaton could accep{fiddle }+{alpha }”in state 1

— after " " automaton is in a non-accept state and might need to backup
The shortest path to the accept state requires two alphabetic charactersaAvith “
simple example. When an apostrophe (or a hyphen) is the next character, there is al-
ways the possibility that the word will end before another alphabetic character restores
the automaton to the accept state.

"But note that the backup is removed by adding an extra production with pafteferit }* " to ensure
that all intermediate states accepimething

4 ADVANCED TOPICS 33

4.6 Choosing Compression Options

Depending on the optiongplexscanners have either one or two lookup tables. The
program attempts to choose sensible compression defaults, but in cases where a user
wishes to directly control the behavior the compression of the tables may be controlled
independently.

In order to use this flexibility, it is necessary to understand a little of how the internal
tables ofgplexare organized. Those readers who are uninterested in the technical
details can safely skip this section and confidently rely on the program defaults.

Scanners Without Equivalence Classes

If a scanner does not use either thlagsesor the Lnicodeoptions, the scanner has
only a next-state table. There is a one-dimensional array, one element for each state,
which specifies for each input character what the next state shall be. In the simple,
uncompressed case each next-state element is simply an array of length equal to the
cardinality of the alphabet. States with the same next-state table share entries, so the
total number of next state entries(j&V| — R) x |S| where|N| is the number of states,
R is the number of states that reference another state’s next-state array| athe
number of symbols in the alphabet. In the case ofdbhmponent Pascal LEgrammar
there are 62 states and the 8-bit alphabet has 256 characters. Without row-sharing there
would be 15872 next-state entries, however 34 rows are repeats so the actual space used
is 7168 entries.
It turns out that these next-state arrays are very sparse, in the sense that there are
long runs of repeated elements. The default compression is to tregf|thatries as
being arranged in a circular buffer and to exclude the longest run of repeated elements.
The entry in the array for each state then has a data structure which specifies: the lowest
character value for which the table is consulted, the numbeoetiefault entries in the
table, the default next-state value, and finallytloe-default array itself. The length of
thenondefault array is different for different states, but on average is quite short. For
theComponent Pascgirammar the total number of entries in all the tables is just 922.
Note that compression of the next-state table comes at a small price at runtime.
Each next-state lookup must inspect the next-state data for the current state, check the
bounds of the array, then either index into the shortened array or return the default
value.

Non-Unicode Scanners With Equivalence Classes

If a scanner uses character equivalence classes, then conceptually there are two tables.
The first, theCharacter Map is indexed on character value and returns the number

of the equivalence class to which that character belongs. This table thus has as many
entries as there are symbols in the alphalsét, Figure 24 shows the conceptual form

of a scanner with character equivalence classes. This figure should be compared with
Figure[10.

The “alphabet” on which the next-state tables operate has only as many entries as
there are equivalence classgs}. Because the number of classes is always very much
smaller than the size of the alphabet, using classes provides a useful compression on
its own. The runtime cost of this compression is the time taken to perform the mapping
from character to class. In the case of uncompressed maps, the mapping cost is a single
array lookup.

4 ADVANCED TOPICS 34

Figure 24: Conceptual diagram of scanner with character equivalence classes

Nextstate
Function

Character
Class Map

Codepoint

Character
Decoding

Equiv.
Class

Current State

Next
State

Encoded
byte stream

In the case of th€omponent Pascalcanner there are only 38 character equivalence
classes, so that the size of the uncompressed next-state tables, R) x |E|, is just
(62 — 34) states by 38 entries, or 1064 entries. Clearly, in this case the total table size
is not much larger than the case with compression but no mapping. For typical 8-bit
scanners thao-compression but character clagsrsion is similar in size and slightly
faster in execution than the default settings.

Note that although the class map often has a high degree of redundancy it is seldom
worth compressing the map in the non-unicode case. The map takes up only 256 bytes,
so the default for non-unicode scanners with character equivalence classamts to
compress the map.

Tables in Unicode Scanners

For scanners that use the unicode character set, the considerations are somewhat differ-
ent. Certainly, the option of using uncompressed next-state tables indexed on character
value seems unattractive, since in the unicode case the alphabet cardinality is 1114112
if all planes are considered. For ti®@mponent Pascgrammar this would lead to un-
compressed tables of almost seventy mega-bytes. In grammars which contain unicode
character literals spread throughout the character space the simple compression of the
next-state tables is ineffective, so unicode scanakvaysuse character equivalence
classes.

With unicode scanners the use of character equivalence classes provides good com-
paction of the next-state tables, since the number of classes in unicode scanners is gen-
erally as small as is the case for non-unicode scanners. However the class map itself, if
uncompressed, takes up more than a megabyte on its own. This often would dominate
the memory footprint of the scanner, so the default for unicode scanners is to compress
the character map.

Whengplexcompresses the character map of a unicode scanner it considers two
strategies, and sometimes uses a combination of both. The first strategy is to use an
algorithm somewhat related to the Fraser and Hansen algorithm for compressing sparse
switch statement dispatch tables. The second is to use a “two-level” table lookup.

Compression of a sparse character map involves dividing the map into dense re-
gions which contain different values, which are separated by long runs of repeated
values. The dense regions are kept as short arrays in the tablesapé function
implements a binary decision tree of deptbg, R|, whereR is the number of regions

4 ADVANCED TOPICS 35

in the map. After at most a number of decisions equal to the tree-depth, if the character
value has fallen in a dense region the return value is found by indexing into the appro-
priate short array, while if a long repeated region has been selected the repeated value
is returned.

A two-level table lookup divides the map function index into high and low bits. For
a 64k map it is usual to use the most significant eight bits to select a sub-map of 256
entries, and use the least significant eight bits to index into the selected sub-map. In a
typical case not all the sub-maps are different, so that i the number of bytes in
the pointer type, and’ is the number of unique sub-maps the total space required is
(256 x N) bytes for the upper level map afigb6 x U) bytes of sub-maps. Two level
maps are fast, since they take only two array lookups to find a value, but for the sparse
case may take more space than the alternative method.

When generating a unicode scanggiex always computes a decision tree data
structure. The program tries to limit the decision-tree depth in order to safeguard per-
formance. In the case that the decision tree is too deep the program switches to two-
level lookup table for th@asic Multilingual Plang(that is for the first 64k characters)
and recursively considers a decision tree for the region beyond the 64k boundary. This
is a good strategy since 14 of the remaining 16 planes are unallocated and the other two
are almost always infrequently accessed.

For the common case wherd BX specification has no literals beyond tASCII
boundary the character space collapses into just two regions: a dense region covering
the 7 or 8-bit range, and a repeated region that repeats all the way out to the 21-bit
boundary. In this case the “decision tree” collapses into the obvious bounds-check —

sbyte MapC(int chr) {
if (chr < 127) return mapCOlchr];
else return (sbyte) 29;

}

wheremapCQOis the map for the dense region frokd “ to
29 encodes the “no transition” class.

It is possible to forcegplexto use the decision-tree algorithm over the whole al-
phabet by using thisqueezeption. This almost always leads to the smallest scanner
tables, but sometimes leads to very deep decision trees and poor performance.

, and equivalence class

Statistics

If the summaryoption is used, statistics related to the table compression are emitted to
the listing file. This section has data for two different scanners. One is a relatively sim-
ple specification for &omponent Pascahnd contains no unicode literal characters.
The other is an extremely complicated specification f@#scanner. This specifi-
cation uses character equivalence classes that range through the whole of the unicode
alphabet.

Figure[2% contains the statistics for the lexical grammar foGbmponent Pascal
Visual Studidanguage service, with various options enabled. This grammar is for a
Babelscanner, and will normally get input from a string buffer. Note particularly that
since thel EX file has no unicode character literals a unicode scanner will take up no
more space nor run any slower than a non-unicode scanner using character equivalence
classes. Inreturn, the scanner will not throw an exception if it is passed a string contain-
ing a unicode character beyond the Latin-8 boundary. The default compression case is
indicated in the table. Thus if no option is given the default@mpressWith option

4 ADVANCED TOPICS 36

Figure 25: Statistics fofomponent Pascaicanners

Options nextstate char- map- | tree-

entries | classes| entries | depth
compresst 902 - - -
nocompress 7168 - - —
classes, nocompressmap, nocompressnext 1064 38 256 -
classes, nocompressmap, compresshex 249 38 256 -
classes, compressmap, compressnext 249 38 127 1
classes, compressmap, nocompressnex 1064 38 127 1
unicode, nocompressmap, nhocompressnext 1064 38 1.1e6 —
unicode, hocompressmap, compressne 249 38 1.1e6 -
unicode, compressmap, compressrext 249 38 127 1
unicode, compressmap, hocompressne 1064 38 127 1

Default compression option

/classeghe default is’nocompressmap /compressnekinally, with option/unicode
the default igcompressmap /compressnext

For the unicode scanners that compress the map the compression used is: a table
for the single dense region covering the first 127 entries, a defanlt carevalue for
the rest of the alphabet, and a decision tree that has degenerated into a simple bounds
check.

An example more typical of unicode scanners is the scann&#oiThis scanner
implements theeCMA-334standard, which among other things allows identifiers to
contain characters that are located throughout the whole unicode alphabet. In this

Figure 26: Statistics fo€# scanner

Options nextstate char- map- | tree-

entries | classes| entries | depth
unicode 1360 55| 13568 5
unicode, squeeze 1360 55 9744 7
unicode, nhocompressmap, hocompressnext 4675 55 1.1e6 -
unicode, hocompressmap, compressne 1360 55| 1.1e6 -
unicode, compressmap, compressrext 1360 55| 13568 5
unicode, compressmap, hocompressne 4675 55| 13568 5

Default compression option

case, the default compression if only thaicodeoption is given is/compressmap
/compressnexiThe compressed map in this case consists of: a two level lookup table
for the basic multilingual plane with a 256-entry upper map pointing to 47 unique sub-
maps. The rest of the map is implemented by a decision-tree of depth 5, with a total of
only 1280 entries in the dense arrays.

The use of thésqueez@ption generates a scanner with a map that is compressed

5 ERRORS AND WARNINGS 37

by a single decision-tree. The tree has depth 7, and the dense arrays contain a total of
9744 elements. Given that the decision tree itself uses up memory space, it is not clear
that in this case the overall compression is significantly better than the default.

When to use Non-Default Settings

If a non-unicode scanner is particularly time critical, it may be worth considering using
character equivalence classes and not compressing either tables. This is usually slightly
faster than the default settings, with very comparable space requirements. In even
more critical cases it may be worth considering simply leaving the next-state table
uncompressed. Without character equivalence classes this will cause some increase in
the memory footprint, but leads to the fastest scanners.

For unicode scanners, there is no option but to use character equivalence classes,
in the current release. In this case, a moderate speedup is obtained by leaving the next-
states uncompressed. Compressing the next-state table has roughly the same overhead
as one or two extra levels in the decision tree.

The depth of the decision tree in the compressed maps depends on the spread of
unicode character literals in the specification. Some pathological specifications are
known to have caused the tree to reach a depth of seven or eight.

Using thesummaryoption and inspecting the listing file is the best way to see
if there is a problem, although it may also be seen by inspecting the source of the
produced scannd&#file.

5 Errors and Warnings

There are a number of errors and warnings tfidéxdetects. Errors are fatal, and no
scanner source file is produced in that case. Warnings are intended to be informative,
and draw attention to suspicious constructs that may need manual checking by the user.

5.1 Errors

Errors are displayed in the listing file, with the location of the error highlighted. In
some cases the error message includes a variable text indicating the erroneous token or
the text that was expected. In the following the variable text is denated

“%%marker must start at beginning of line —
An out-of-place marker was found, possibly during error recovery from an earlier
error.

Cannot set/unicode option inconsistently<...> —
Normally options are processed in order and may undo other option’s effect.
However, options that explicitly set the alphabet size suchrasodeor /nouni-
codecannot be contradicted by later options.

Class<...> not found in assembly —
The class specified for a user-defined character class predicate could not be found
in the nominated assembly.

Context must have fixed right length or fixed left length —
gplexhas a limitation on the implementation of patterns with right context. Either
the right context or the body of the pattern must recognize fixed length strings.

5 ERRORS AND WARNINGS 38

Context operator cannot be used with a right anchor '$” —
The regular expression (possibly after expanding named categories) has both a
context operator and a right anchor symbol.

Empty semantic action, must be at least a comment—
No semantic action was found. This error also occurs due to incorrect syntax in
thepreceedingule.

Expected character<..> —
During the scanning of a regular expression an expected character was not found.
This most commonly arises from missing right hand bracketing symbols, or clos-
ing quote characters.

Expected space here—
Thegplexparser was expecting whitespace. This can arise when a lexical cate-
gory definition is empty or when the pattern of a rule is followed by an end-of-
line rather than a semantic action.

Expected end-of-line here—
Unexpected non-whitespace characters have been found at the end of a construct
when an end of line is the only legal continuation.

Extra characters at end of regular expression—
The regular expression is incorrectly terminated.

lllegal escape sequence..> —
An illegal escape sequence was embedded in a literal string.

lllegal name for start condition <..> —
Names of start conditions must be identifiers. As a special case the number zero
may be used as a shortcut for a used occurrence of the initial start state. Any
other numeric reference is illegal.

Illegal octal character escape<..> —
Denotation of character values by escaped octal sequences must contain exactly
three octal digits, except for the special case\of':

lllegal hexadecimal character escapg...> —
Denotation of character values by escaped hexadecimal sequences must contain
exactly two hexadecimal digits.

lllegal unicode character escapes...> —
Denotation of character values by unicode escapes must have exactly four hex-
adecimal digits, following a\t * prefix, or exactly eight hexadecimal digits,
following a \U ' prefix.

lllegal character in this context —
The indicated character is not the start of any posgplextoken in the current
scanner state.

Inconsistent “%option " command <..> —
The message argument is an option that is inconsistent with already processed
options. In particular, it is not possible to declaneClassegor a unicode scan-
ner.

5 ERRORS AND WARNINGS 39

Invalid action —
There is a syntax error in the multi-line semantic action for this pattern.

Invalid or empty namelist —
There is a syntax error in the namelist currently being parsed.

Invalid production rule —
There is a syntax error in the rule currently being parsed.

Invalid character range: lower bound > upper bound —
In a character range within a character class definition the character on the left
of the ‘- must have a numerically smaller code point than the character on the
right.

Invalid single-line action —
gplexfound a syntax error in the parsing of a single-line semantic action.

Invalid class character: ‘=’ must be escaped—
A ‘=’ character at the start or end of a character set definition is taken as a lit-
eral, single character. Everywhere else in a set definition this character must be
escaped unless it is part of a range declaration.

Lexical category<...> already defined —
The lexical category in this definition is already defined in the symbol table.

Lexical category must be a character class...> —
In this version ofgplexcharacter set membership predicates can only be gener-
ated for lexical categories that are character classes “[...]".

Method <...> not found in class —
The method specified for a user-defined character class predicate could not be
found in the nominated class, or the method does not have the correct signature.

Missing matching construct<..> —
The parser has failed to find a matching right hand bracketing character. This
may mean that brackets (either ‘(, ‘[' of*) are improperly nested.

“namespace” is illegal, use %onamespace” instead —
C# code in the lex specification is insertatside the generated scanner class.
The namespace of the scanner can only be set using the non-stétkame-
space command.

“next” action ‘ | ' cannot be used on last pattern—
The | ' character used as a semantic action has the meanggthe same action
as the following patterh This action cannot be applied to the last pattern in a
rules section.

No namespace has been defined-
The end of the definitions section of the specification was reached without find-
ing a valid namespace declaration.

Non unicode scanner cannot use /codePage:guess
For byte-mode scanners the code page setting is used at scanner generation time
to determine the meaning of character predicates. The code page guesser works
at scanner runtime.

5 ERRORS AND WARNINGS 40

Only “public” and “internal” allowed here —
The “%visibility " marker can only declare the scanner class to be public or
internal.

Parser error <..> —
Thegplexparser has encountered a syntax error in the ingtfile. The nature
of the error needs to be found from the information inthe> placeholder.

Start state <...> already defined —
All start state names must be unique. The indicated name is already defined.

Start state <...> undefined —
An apparent use of a start state name does not refer to any defined start state
name.

Symbols “ " and ‘$’ can only occur at ends of patterns —
The two anchor symbols can only occur at the end of regular expressions. This
error can arise when an anchor symbol is part of a lexical category which is then
used as a term in another expression. Using anchor symbols in lexical categories
should be deprecated.

This assembly could not be found—
The assembly specified for a user-defined character class predicate could not be
found. ThePE-file must be in the current working directory.

This assembly could not be loaded—
The assembly specified for a user-defined character class predicate could not be
loaded. The assembly must be a valRET managed cod®E-file, andgplex
must have sufficient privilege to load the assembly.

This token unexpected—
The parser is expecting to find indented text, which can only be partG# a
code-snippet. The current text does not appear to be @gal

Type declarations impossible in this context—
gplexallows type declarationglgss, struct, enum) in the definitions sec-
tion of the specification, and in the user code section. Type declarations are not
permitted in the rules section.

“using” is illegal, use “%using " instead —
C# code in the lex specification is insertetside the generated scanner class.
The using list of the scanner module can only have additional namespaces added
by using the non-standafdusing command.

Unknown lexical category<..> —
This name is not the name of any defined lexical category. This could be a
character case error: lexical category names are case-sensitive.

Unexpected symbol, skipping to<..> —
gplexhas found a syntax error in the current section. It will discard input until it
reaches the stated symbol.

Unrecognized ‘Yoption " command <..> —
The given option is unknown.

5 ERRORS AND WARNINGS 41

Unknown character predicate<...> —
The character predicate name in fhe...:] construct is not known tgplex

Unicode literal too large<..> —
The unicode escape denotes a character with a code point that exceeds the limit
of the unicode definitiorQx 1Offff

Unterminated block comment start here —
A end of this block commernt ...* was not found before the end of file was
reached. The position of ttetart of the unterminated comment is marked.

Unknown lex tag name —
Tags ingplexare all those commands that start withea. The current tag is not
known. Remember that tag names are case-sensitive.

Version of gplexx.frame is not recent enough—
The version of gplexx.frame thgplexfound does not match thgplexversion.

5.2 Warnings

A number of characteristics of the input specification may be dangerous, or require
some additional checking by the user. In such cagtsxissues one of the following
warnings. In some cases the detected constructs are intended, and are safe.

/babel option is unsafe without/unicode option —
Scanners generated with thabel option read their input from strings. It is
unsafe to generate such a scanner without decldtingodesince the input
string might contain a character beyond the Latin-8 boundary, which will cause
the scanner to throw an exception.

Code between rules, ignored—
Codebetweerrules in the rules section of a specification cannot be assigned to
any meaningful location in the generated scanner class. It has been ignored.

No upper bound to range,<...> included as set class members—
Itis legal for the last character in a character set definition to be the ‘—’ character.
However, check that this was not intended to be part of a range definition.

Special casex...> included as set class member—
Itis legal for the first character in a character set definition to be the ‘~’ character.
However, check that this was not intended to be part of a range definition.

This pattern is never matched —
gplexhas detected that this pattern cannot ever be matched. This might be an
error, caused by incorrect ordering of rules. (See the next two messages for
diagnostic help).

This pattern always overridden by<..> —
In the case that a pattern is unreachable, this warning is attached to the unreach-
able pattern. The variable text of the message indicates (one of) the patterns that
will be matched instead. If this is not the intended behavior, move the unreach-
able pattern earlier in the rule list.

6 EXAMPLES 42

This pattern always overrides pattern<..> —
This warning message is attached to the pattern that makes some other pattern
unreachable. The variable text of the message indicates the pattern that is ob-
scured.

This pattern matches the empty string, and might loop—
One of the input texts that this pattern matches is the empty string. This may be
an error, and might cause the scanner to fail to terminate. The following section
describes the circumstances under which such a constiN@’isan error.

Matching the Empty String

There are a number of circumstances under which a pattern can match the empty string.
For example, the regular expression may consist dfcdosure or may consist of a
concatenation of symbols each of which is optional. It is also possible for a pattern
with fixed-length right context to have a pattern body (variable-length left context)
which matches the empty string. All such patterns are detectgglex

Another way in which a pattern recognition might consume no input is for the

semantic action of a pattern to contain the commgyldss(0) . If this is the case
the semantic action will reset the input position back to stest of the recognised
pattern.

In all cases where the pattern recognition does not consume any input, if the start
state of the scanner is not changed by the semantic action the scanner will become
stuck in a loop and never terminate.

Nevertheless, it is common and useful to include patterns that consume no input.
Consider the case where some characteristic pattern indicates a “phase change” in the
input. SupposeX denotes that patterty; is the previous start condition and the new
phase is handled by start conditiSn. The following specification-pattern is a sensible
way to implement this semantic —

<51>X { BEGIN(S2); yyless(0); }

<So>...
Using this specification-pattern allows the regular expression patterns that belong to
the S, start state to include patterns that begin by matchingXhthat logically be-
gins the new input phase. The lexical specificationdplex uses this construct no
less than three times. For scanners that usésthekoption, callingyy_pop stateor
yy_pushstatealso constitute a change of start state for purposes of avoiding looping.

6 Examples

This section describes the stand-alone application examples that are pargpfeke
distribution. In practice the user code sections of such applications might need a bit
more user interface handling.

The text for all these examples is in thexamples ” subdirectory of the distribu-
tion.

6.1 Word Counting

This application scans the list of files on the argument list, counting words, lines, in-
tegers and floating point variables. The numbers for each file are emitted, followed by
the totals if there was more than one file.

6 EXAMPLES 43

The next section describes the input, line by line.
The file WordCount.lexbegins as follows.

%namespace LexScanner
%option noparser, verbose

%
static int lineTot = O;
static int wordTot = O;
static int intTot = 0;
static int fltTot = O;
%0}

the definitions section begins with the namespace definition, as it must. We do not need
any “using " declarations, sinc8ystenandSystem.lGre needed by the invariant code
of the scanner and are imported by default. Next, four class fields are defined. These
will be the counters for the totals over all files. Since we will create a new scanner
object for each new input file, we make these counter variaipdgis
Next we define three character classes —
alpha [a-zA-Z]
alphaplus [a-zA-Z\-1]
digits [0-9]+
%%
Alphaplusis the alphabetic characters plus hyphens (note the escape) and the apos-
trophe. Digits is one or more numeric characters. The final line ends the definitions
section and begins the rules.
Firstin the rules section, we define some local variables foBtizroutine. Recall
that codebeforethe first rule becomes part of the prolog.
int lineNum = 0;
int wordNum = 0;

int intNum = O;
int fltNum = 0;

These locals will accumulate the numbers within a single file. Now come the rules —
\n[\rn\n? lineNum++; lineTot++;
{alpha}{alphaplus}*{alpha} wordNum++; wordTot++;

{digits} intNum++; intTot++;
{digits}\.{digits} fltNum++; fltTot++;

The first rule recognizes all common forms of line endings. The second defines a
word as an alpha followed by more alphabetics or hyphens or apostrophes. The third
and fourth recognize simple forms of integer and floating point expressions. Note
especially that the second rule allows words to contain hyphens and apostrophes, but
only in theinterior of the word. The word must start and finish with a plain alphabetic
character.

The fifth and final rule is a special one, using the special marker denoting the end
of file. This allows a semantic action to be attached to the recognition of the file end.
In this case the action is to write out the per-file numbers.

<<EOF>> {
Console .Write(" Lines: " + lineNum);
Console .Write(" , Words: " + wordNum);
Console .Write(" , Ints: "+ intNum);
Console .WriteLine(" , Floats: "+ fltNum);

%%

6 EXAMPLES 44

Note that we could also have placed these actions as code in the epilog, to catch termi-
nation of the scanning loop. These two are equivalent in this particular case, but only
since no action performs a return. We could also have placed the per-file counters as
instance variables of the scanner object, since we construct a fresh scanner per input
file.

The final line of the last snippet marks the end of the rules and beginning of the
user code section.

The user code section is shown if Figliré 27. The code opens the input files one by
one, creates a scanner instance and gglex

Figure 27: User Code for Wordcount Example

public static void Main(string [] argp) {
for (int i = 0; i < argp.Length; i++) {
string name = argp]i];
try |
int tok;
FileStream file = new FileStream (name, FileMode .Open);
Scanner scnr = new Scanner (file);
Console .WriteLine("File: " + name);
do {

tok = scnr.yylex();
} while (tok > (int) Tokens .EOF);
} catch (IOException) {

Console .WriteLine("File " + name + " not found"),

}

}

if (argp.Length > 1) {
Console .Write("Total Lines: " + lineTot);
Console .Write(", Words: " + wordTot);
Console .Write(", Ints: " + intTot);
Console .WriteLine(" Floats: " + fltTot);

}

}

Building the Application

The fileWordCount.css created by invoking —

D:\gplex\test> gplex /summary WordCount.lex
This also create¥/ordCount.Iswith summary information.

This particular example, generates26SAstates which reduce to just IFSA
states. Nine of these states am:eptstate@ and there are two backup states. Both
backup states occur on a “.” input character. In essence when the lookahead character
is dot,gplexrequires an extra character of lookahead to before it knows if this is a full-
stop or a decimal point. Becaugelex performs state minimization by default, two

backup states are merged and the final automaton has just nine states.

8These are always the lowest numbered states, so as to keep the dispatch table for the semantic action
switch statement as dense as possible.

6 EXAMPLES 45

Since this is a stand-alone application, the parser type definitions are taken from
the gplexx.framdile, as described in Figufe [19. In non stand-alone applications these
definitions would be accessed bylsing ” the parser namespace in the lex file. By
defaultgplexembeds the buffer code in tiW¥ordCount.coutput file. Thus we only
need to compile a single file —

D:\gplex\test> csc WordCount.cs

producingWordCount.exeRun the executable over its own source files —

D:\gplex\test> WordCount WordCount.cs WordCount.lex
File: WordCount.cs

Lines: 590, Words: 1464, Ints: 404, Floats: 3

File: WordCount.lex

Lines: 64, Words: 151, Ints: 13, Floats: 0

Total Lines: 654, Words: 1615, Ints: 417, Floats: 3
D:\gplex\test>

The text in plain typewriter font is console output, the slanting, bold font is user input.

Where do the three “floats” come from? Good question! The te¥tatlCount.cs
quotes some version number strings in a header comment. The scanner thinks that
these look like floats. As well, one of the table entries of the automaton has a comment
that the shortest string reaching the corresponding stateds'"

6.2 ASCII Strings in Binary Files

A very minor variation of the word-count grammar produces a version ofUtiex
“strings” utility, which searches for ascii strings in binary files. This example uses
the same user code section as the word-count example, Figure 27, with the following
definitions and rules section —

alpha [a-zA-Z]

alphaplus [a-zA-Z\-1]

%%

{alpha}{alphaplus}*{alpha} Console .WriteLine(yytext);

%%
This example is in file &trings.lex

”

6.3 Keyword Matching

The third example demonstrates scanningtahgsinstead of files, and the way that
gplexchooses the lowest numbered pattern when there is more than one match. Here
is the start of the filefbobar.lex "

%namespace LexScanner
%option noparser nofiles

alpha [a-zA-Z]

%%

foo |

bar Console .WriteLine(" keyword " + yytext);
{alpha}{3} Console .WriteLine(" TLA " + yytext);
{alpha}+ Console .WriteLine(" ident " + yytext);

%%

The point is that the input text “foo” actually matches three of the four patterns. It
matches the TLA" pattern and the general ident pattern as well as the exact match.

6 EXAMPLES 46

Figure 28: User Code for keyword matching example

public static void Main(string [] argp) {
Scanner scnr = new Scanner ();
for (int i = 0; i < argp.Length; i++) {
Console .WriteLine("Scanning \"" + argp[i] + "\,
scnr.SetSource(argpli], 0);
scnr.yylex();
}
}

Altering the order of these rules will exercise the “unreachable pattern” warning mes-
sages. Try this!

Figure[28 is the string-scanning version of the user code section. This example
takes the input arguments and passes them t&¢t8ourcenethod. Try the program
out on input strings such a6 bar foobar blah ” to make sure that it behaves as
expected.

After playing with this example, try generating a scanner withdagelnsensitive
option. The scanner will recognize all of "foo”, "FOQO”, "fO0” and so on as keywords,
but will display the actual text of the input in the output. Notice that in this case the
character class "alpha” could just as well have been definefha$ “ .

One of the purposes of this example is to demonstrate one of the two usual ways
of dealing with reserved words in languages. One may specify each of the reserved
words as a pattern, with a catch-all identifier pattern at the end. For languages with
large numbers of keywords this leads to automata with very large state numbers, and
correspondingly large next-state tables.

When there are a large number of keywords it is sensible to define a single identifier
pattern, and have the semantic action delegate to a method call —

return GetldToken(yytext);

The GetldTokermethod should check if the string of the text matches a keyword, and
return the appropriate token. If there really are many keywords the method should per-
form a switch on the first character of the string to avoid sequential search. Finally,
for scanners generated with tleaselnsensitivewitch remember that thgytextvalue

will retain the case of the original input. For such applicationsGetdTokermethod
should do &tring. ToUppercall to canonicalize the case before testing for string equal-

ity.

6.4 The Code Page Guesser

The “code page guesser” is invoked by unicode scanners generated witiutfeage:-
guessoption if an input file is opened which has b F prefix. The guesser scans the
input file byte-by-byte, trying to choose between treating the file as a utf-8 file, or
presuming it to be an 8-bit byte-file encoded using the default code page of the host
machine.

The example file GuesserTest.lex " is a wrapped example of the code page
guesser. It scans the files specified in the command line, and reports the number of
significant patterns of each kind that it finds in each file.

6 EXAMPLES 47

The basic idea is to look for sequences of bytes that correspond to well-formed
utf-8 character encodings that require two or more bytes. The code also looks for bytes
in the upper-128 byte-values that are not part of any valid utf-8 character encoding. We
want to create an automaton to accumulate counts of each of these events. Furthermore,
we want the code to run as quickly as possible, since the real scanner cannot start until
the guesser delivers its verdict.

The following character sets are defined —

Utf8pfx2 [\xcO-\xdf] /I Bytes with pattern 110x xXxxx
Utf8pfx3 [\xe0-\xef] // Bytes with pattern 1110 xxxx
Utf8pfx4 [\xfO-\xf7] // Bytes with pattern 1111 Oxxx
Utf8cont [\x80-\xbf] // Bytes with pattern 10xx xxxx
Upperl28 [\x80-\xrf] I/ Bytes with pattern 1xxx XXxx

These sets are: all those values that are the first byte of a two, three or four-byte utf-8
character encoding respectively; all those values that are valid continuation bytes for
multi-byte utf-8 characters; and all bytes that are in the upper-128 region of the 8-bit
range.

Counts are accumulated for occurrences of two-byte, three-byte and four-byte utf-8
character patterns in the file, and bytes in the upper 128 byte-value positions that are
not part of any legal utf-8 character. The patterns are —

{Utf8pfx2}{Utf8cont} utf2++; /I Increment 2-byte utf counter
{Utf8pfx3{Utf8cont}{2} utf3++; /I Increment 3-byte utf counter
{Utf8pfx4H{Utf8cont}{3} utfd++; /I Increment 4-byte utf counter
{Upper128} uppr++; /I Increment upper non-utf count

It should be clear from the character set definitions that this pattern matcher is defined
in a natural way in terms of symbol equivalence classes. This suggestsgydag
with the classesption. The resulting automaton has six equivalence classes, and just
twelve states. Unfortunately, it also has two backup states. The first of these occurs
when aUtf8pfx3byte has been read, and the next byte is a member ditt8zont
class. The issue is that the first byte is a perfectly good match farghepattern, so
if the bytetwo aheads not a secontltf8contthen we will need to back up and accept
theuppr pattern. The second backup state is the cognate situation for the fourtfayte
pattern.

Having backup states makes the automaton run slower, and speed here is at a pre-
mium. Some reflection shows that the backup states may be eliminated by defining
three extra patterns —

{Utf8pfx3}{Utf8cont} uppr += 2; /l Increment uppr by two
{Utf8pfx4}{Utf8cont} uppr += 2; /I Increment uppr by two
{Utf8pfx4H{Utf8cont}{2} uppr += 3; /I Increment uppr by three

With these additional patterns, when the first two bytes oftig or utf4 patterns
match, but the third byte does not, rather than back up, wewdtb theuppr count.
Similarly, if the first three bytes of thetf4 pattern match but the fourth byte does not
match we addhreeto theuppr count.

The new automaton has the same number of equivalence classes, and the same
number of states, but has no backup states. This automaton can run very fast indeed.

6.5 Include File Example

The example prograrncludeTestis a simple harness for exercising the include file
facilities ofgplex The complete source of the example is the fitelfudeTest.lex ”
in the distribution.

7 NOTES 48

The program is really a variant of the “strings” program of a previous example,
but has special semantic actions when it reads the stfiingltide " at the start of an
input line. As expected, the file declareBafferContexstack.

Stack <BufferContext > bStack = new Stack <BufferContext >();
Compared to the strings example there are some additional declarations.
%x INCL /I Start state while parsing include command
dotchr ["\r\n] /l EOL-agnostic version of traditional LEX ‘!
eol (\r\n?|\n) /I Any old end of line pattern
/I And soon ...

The rules section recognizes strings of length two or more, the include pattern, and
also processes the filenames of included files.

{alpha}{alphaplus}*{alpha} { Console .WriteLine(
"{0}{1} {2}: {3}", Indent(), yytext, yyline, yycol); }

“"#include" BEGIN(INCL);

<INCL>{eol} BEGIN(0); Trylnclude(null);

<INCL>[\{] /* skip whitespace */

<INCL>[" \t[{dotchr}* BEGIN(O); TryInclude(yytext);
Thelndentmethod returns a blank string of length depending on the depth of the buffer
context stack. This “pretty prints” the output of this test program.

The user code in Figufe P9 supplisin, Trylncludeandyywrapfor the example.
In this example the command line arguments are passed lnted8uff buffer. Since
the buffers that result from file inclusion will be &uildBuff type, this demonstrates
the ability to mix buffers of different types using file inclusion.

Most of the error checking has been left out of the figure, but the example in the
distribution has all the missing detail.

7 Notes
7.1 Moving Fromv1.0tov1.1.0

Version 1.1.0 ofjplexis a relatively major change to the tool, and involves a number of
changes that are potentially breaking for some existing applications. Breaking changes
are a matter of regret, so this section attempts to explain the nature of the changes, and
the reasons.

7.1.1 Performance Issues

Earlier versions ofjplexproduced scanners with poor performance on large input files.
All file buffers were built on top of a buffered byte-stream, and the byte-stream position
was used for the bufferBosproperty. As a consequence callstdessandbuffer.Get-
Stringcaused 10 seeks, with a large performance hit.

Version 1.1.0 uses an object of tSeeamReaderlass to read the input stream, and
then buffers the resultinghar values in a double-buffer based on t&&ingBuilder
class. “Seek” within this buffer causes no IO activity, but simply indexes within the
builder. This solves the performance problem.

However, the ability to perform an arbitrary seek within the input file has been lost,
since the string builder tries to keep no more than two file-system pages in the buffer.
The default behavior of the buffers in version 1.1.0 isitdreclaim buffer space. The
/noPersistBuffeoption reduces the memory footprint for those application where the
buffers do not need to be persisted.

7 NOTES 49

Figure 29: User code fdncludeTesexample

public static void Main(string [] argp) {
if (argp.Length == 0)

Console .WriteLine("Usage: IncludeTest args"”);
else {

int tok;

Scanner scnr = new Scanner ();

scnr.SetSource(argp); /I Create LineBuff object from args

do {

tok = scnr.yylex();
} while (tok > (int) Tokens .EOF);

}
}
private void Trylnclude(string fName) {
if (fName == null)
Console .Error.WriteLine("#include, no filename");
else {

BufferContext savedCtx = MKkBuUffCtx();

SetSource(new FileStream (fName, FileMode .Open));

Console .WriteLine("Included file {0} opened" , fName);
bStack.Push(savedCitx); /I Don’t push until after file open succeeds!

}

protected override bool yywrap() {
if (bStack.Count == 0) return true
RestoreBuffCtx(bStack.Pop());
Console .WriteLine("Popped include stack");
return false ;

7.1.2 Removing Unicode Encoding Limitations

Earlier versions ofjplexused character encodings which were built on top of a byte
stream. However, the available encodings were limited taithéormats, or any of the
library encodings that have the “single byte property”. The current version may use any
of the encoders from th8ystem.Globalizationamespace of the base class libraries.

Scanners consume unicode code points, represented as integer values. However,
for all input sources the code point “position” is represented by the ordinal number of
the first System.Chafrom which the code point is derived. See figliré 13. There is
some small inefficiency involved fartf-8 encodings where characters from outside the
basic multilingual planeare decoded to an integer value and then split into a surrogate
pair in the buffer. Th&setCodemethod will then merge the pair back into a single code
point to deliver to the scanning engine. This is a small price to pay for the convenience
of having a uniform representation for input posiﬁbn

9Several attempts were made to create a buffer class that directly buffered code points, but none performed
as well as thétringBuilderclass.

7 NOTES 50

7.1.3 Avoiding Name-Clashes with Multiple Scanners

For those applications that use multiple scanners, problems arose with name-clashes
in duplicated code. The new version moves all of the invariant, buffer code into the
separate resourc&plexBuffers This resource may either be included in the project
as a single file which may be shared between multiple scanners, or may be embedded
in each of the separate scanner namespaces. The default behavior is to embed the code
in the scanner namespace. The default is appropriate and simple for single-scanner
applications, particularly stand-alone scanner-based tools. See gecfion 4.2 for more
detail.

An additional resource in version 1.1.0 is the possibility to limit the visibility of the
generated types, and to override the default naming of the scanner, token and scanner
base types.

7.1.4 Compliance withFxCop

Applications which embedplexscanners trigger a large number of design-rule warn-
ings inFxCop Some of these warnings relate to naming guidelines, while others im-
pact on code safety.

Version 1.1.0 generates scanners whictFxi@opfriendly. Those guidelines which
gplexcannot honor, such as the naming of lega&} elements with names beginning
with “yy” are explicitly marked with a message suppression attribute. In most cases
the reason for the message suppression is noted in a source comment.

The major changes resulting from this exercise with the potential to break existing
applications fall into two categories. Some of the non-legacy members of the scanner
classes have been renamed. This will cause issuessérwrittencode that accesses
internal scanner class members. This may require some renaming of identifiers. For
example, the abstract base class of scanners, defirgggbon has been changed from
IScannerto AbstractScannerUser code probably never refers to this class, but if an
existing application happens to do this, the code will need changing. Similarly, user-
written semantic actions normally have no need to directly call the “get next codepoint”
function of the scanner class. However, if existing scanners do this, then it is relevant
that the name has changed fr@etChrto GetCode

More serious is the restructuring and renaming of classes in the buffer code. All
of the concrete buffer classes are now private, and scanners accessdnlffera the
facilities presented by the abstré@tanBuffclass. User code can only create buffer
objects using the static factory method-grdBganBuff.GetBufferor more sensibly,
using the scanner'SetSourcenethod-group. For a tabular summary of potentially
breaking changes see Appen(diX 16.

7.2 Implementation Notes

Versions since 0.4.0 parse their input files using a parser constructed by Gardens Point
Parser Generatogppg. Because it is intended to be used with a colorizing scanner
the grammar contains rules for both thEX syntax and also many rules f@#. The

parser will match braces and other bracketing constructs within the code sections of
the LEX specification.gplexwill detect a number of syntax errors in the code parts of
the specification prior to compilation of the resulting scanner output file.

7 NOTES 51

Compatibility

The current version afplexis not completely compatible with eith@OSIX LEXor
with Flex. However, for those features thate implemented the behaviour follows
Flex rather tharPOSIXwhen there is a difference.

Thusgpleximplements the £<<EOF>>" marker, and both the%x and “%s’ mark-
ers for start states. The semantics of pattern expansion also followtethmodel. In
particular, operators applied to named lexical categories behave as though the named
pattern were surrounded by parentheses. Forthcoming versions will continue this pref-
erence.

Error Reporting

The default error-reporting behavior gippgconstructed parsers is relatively primitive.
By default the calls offyerror do not pass any location information. This means that
there is no flexibility in attaching messages to particular positions in the input text.
In contexts where th&rrorHandler class supplies facilities that go beyond those of
yyerror it is simple to disable the default behaviour. The scanner base class created by
the parser defines an emptyerror method, so that if the concrete scanner class does
not overrideyyerror no error messages will be produced automatically, and the system
will rely on explicit error messages in the parser's semantic actions.

In such cases the semantic actions of the parser will direct errors to the real error
handler, without having these interleaved with the default messages from the shift-
reduce parsing engine.

7.3 Limitations for Version 1.1.0

Version 1.1.0 supports anchored strings but does not support variable right context.
More precisely, irR;/ R, at least one of the regular expressi®isandR; must define
strings of fixed length. Either regular expression may be of arbitrary form, provided
all accepted strings are the same constant length. As well, the standard lex character
set definitions such aqg:fsalpha:] " are not supported. Instead, the character
predicates from the base class libraries, sudislastterare permitted.

The default action oLEX, echoingunmatchednput to standard output, is not
implemented. If you really need this it is easy enough to do, but if you don’t want it,
you don’t have to turn it off.

7.4 Installing GPLEX

gplexis distributed as a zip archive. The archive should be extracted into any conve-
nient folder. The distribution contains four subdirectories. Thiedries " directory
contains the filegplex.exe In environments that have botfjplexand Gardens Point
Parser Generatogppg, it is convenient to put the executables for both applications in
the same directory.
The “project " directory contains th&isual Studigroject from which the current
version ofgplexwas built. The ocumentation ” directory contains the files —
“Gplex.pdf ",
“Gplex-Changelog.pdf " and the file
“GplexCopyright.rtf "
The “examples " directory contains the examples described in this documentation.
The application requires version 2.0 of thiécrosoft .NETruntime.

7 NOTES 52

7.5 Copyright

Gardens PointEX (gplex is copyright© 2006-2010, John Gough, Queensland Uni-
versity of Technology. See the accompanying documeamLEXcopyright.rtf

Code that you generate witiplexis not covered by thgplexlicence, it is your own.

In particular, the inclusion ofplexlibrary code in the generated code does not make
the generated code a "derived work” gylex

7.6 Bug Reports

Gardens PointEX (gpleX is currently being maintained and extended by John Gough.
Bug reports and feature requestsdpiexshould be posted to the issues tab ofghkex
page on CodePlex.

53

Part Il
The Input Language

8 The Input File

8.1 Lexical Considerations

Everygplexgenerated scanner operates either in byte-mode or in unicode-gpide.
scans its own input using a byte-mode scanner. It follows that*the “ ” files that
gplexreads are treated as streams of 8-bit bytes.

8.1.1 Character Denotations

Thegplexscanner operates in byte-mode. Nevertheless, the input files can define uni-
code scanners, and can denote character literals throughout the entire unicode range.
Denotations of characters gplexmay be uninterpreted occurrences of plain charac-
ters, or may be one of the conventional character escapes, sueh’as ‘\0 '. As
well, characters may be denoted by octal, hexadecimal or unicode escapes.

In different contexts within & EX specification different sets of characters have
special meaning. For example, within regular expressions parentt{eges ‘are used
to denote grouping of sub-expressions. In all such cases the ordinary character is de-
noted by arescapedccurrence of the character, by being prefixed by a backslash *
character. In the regular expression sedtion 9 of this document the characters that need
to be escaped in each context are listed.

8.1.2 Names and Numbers

There are several places in the input syntax where names and name-lists occur. Names
in version 1.0 are simpl&SCIl|, alphanumeric identifiers, possibly containing the low-
line character ‘’. This choice, while restrictive, makes input files independent of host
code page setting. Name-lists are comma-separated sequences of hames.

Numbers are unformatted sequences of decimal digjlexdoes not range-check
these values. If a value is too large for the type an exception will be thrown.

8.2 Overall Syntax

A lex file consists of three parts: thaefinitionssection, therules section, and the
user-codesectiofld

LexInput
DefinitionSequence“%% RulesSection UserCodeSectigh

UserCodeSection
“%% UserCodept

)

TheUserCodesection may be left out, and if is absent the dividing m&d&may be
left out as well.

10 Grammar fragments in this documentation will follow the meta-syntax usegbfayand other bottom-
up parsers.

8 THE INPUT FILE 54

8.3 The Definitions Section

The definitions section contains several different kinds of declarations and definitions.
Each definition begins with a characteristic keyword marker beginning withahd

must be left-anchored.
DefinitionSequence

DefinitionSequengg; Definition

Definition
: NamespaceDeclaration

| UsingDeclaration

| VisibilityDeclaration

| NamingDeclaration

| StartConditionsDeclaration

| LexicalCategoryDefintion

| CharacterClassPredicatesDeclaration

| UserCharacterPredicateDeclaration

| UserCode

| OptionsDeclaration

8.3.1 Using and Namespace Declarations

Two non-standard markers in the input file are used to genesatg andnamespace
declarations in the scanner file.
The definitions section must declare the namespace in which the scanner code will
be placed. A sensible choice is something WgpName.exer . The syntax is —
NamespaceDeclaration
“%namespace” DottedName

whereDottédNamés a possibly qualifie€C#identifier.
The following namespaces are imported by default into the file that contains the

scanner class —
using System;

using System.lO;

using System.Text;

using System.Globalization;

using System.Collections.Generic;

using System.Runtime.Serialization;

using System.Diagnostics.CodeAnalysis;
If buffer code isnotembedded in the scanner file, th@T.GplexBufferss imported
also.

Any other namespaces that are needed by user code or semantic actions must be

specified in a %using " declaration.

UsingDeclaration

“%using ” DottedName *;’

For scanners that work on behalf gipggenerated parsers it would be necessary to
import the namespace of the parser. A typical declaration would be —
%using myParserNamespace;
Note that the convention for the use of semicolons follows th&t#fUsing declara-
tions need a semicolon, namespace declarations do not.
Every input file must have exactly one namespace declaration. There may be as
many, or few, using declarations as are needed by the user.

8 THE INPUT FILE 55

8.3.2 Visibility and Naming Declarations

Four non-standard declarations are used to control the visibility and naming of the
types used in thgplex APl The visibility declaration has the following syntax —

VisibilityDeclaration
“Qvisibility " Keyword

whereKeywordmay be eithepublic orinternal . The declaration sets the visibility
of the typesTokens, ScanBase, IColorScan, Scaniiée default is public.
Naming declarations have the following syntax —

NamingDeclaration
“%scanbasetype Identifier
| “%scannertype Identifier
| “%tokentype " Identifier

”

whereldentifieris a simpleC# identifier.

These declarations declare the name of the corresponding type within the generated
scanner. In the absence of naming declaratgpisxgenerates a scanner as though it
had seen the declarations —

%scannertype Scanner

%scanbasetype ScanBase
%tokentype Tokens

Itis important to remember that the code of the scadeéinesthe scanner class name.
The scanner base class and the token enumeration name are defined in the parser, so the
corresponding naming declarations really deelarations These declarations must
synchronize with the definitions in the parser specification. The naming declaration
syntax is identical in thgplexandgppgtools.

In the case of stand-alone scanners, which have no parser, all three naming decla-
rationsdefinethe type names.

8.3.3 Start Condition Declarations

Start condition declarations define names for vargtast conditions The declarations
consist of a marker: %X’ for exclusive conditions, and%s’ for inclusive conditions,
followed by one or more start condition names. If more than one name follows a
marker, the names are comma-separated. The markers, as usual, must occur on a line
starting in column zero.

Here is the full grammar for start condition declarations —

StartConditionsDeclaration
Marker NamelList

Marker
“%xX | “%Ss

NamelList
ident
| NameList ‘," ident

1

8 THE INPUT FILE 56

Such declarations are used in the rules section, where they predicate the application
of various patterns. At any time the scanner is in exactly one start condition, with
each start condition name corresponding to a unique integer value. On initialization a
scanner is in the pre-defined start conditidNITIAL” which always has value 0.

When the scanner is set to arclusivestart conditioronly patterns predicated on
that exclusive condition are “active”. Conversely, when the scanner is seirtolasive
start condition patterns predicated on that inclusive condition are active, and so are all
of the patterns that are unconditighal

8.3.4 Lexical Category Definitions

Lexical category code defines named regular expressions that may be used as sub-
expressions in the patterns of the rules section.

LexicalCategoryDefinition

ident RegularExpression

The syntax of regular expressions is treated in detail in Seffion 9 A typical example
might be —

digits [0-9]+
which definedigits as being a sequence of one or more characters from the character
class ‘0’ to ‘9. The name being defined must start in column zero, and the regular
expression defined is included for used occurrences in patterns. Note thgtidar
this substitution is performed by tree-grafting in #h8T, not by textual substitution,
so each defined pattern must be a well formed regular expression.

8.3.5 Character Class Membership Predicates

Sometimes user code of the scanner needs to test if some computed value corresponds
to a code-point that belongs to a particular character class.
CharacterClassPredicatesDeclaration
“9%charClassPredicate " NamelList
NamelLisis a comma-separated list of lexical category names, which must denote char-
acter classes.
For example, suppose that some support code in the scanner needs to test if the
value of some unicode escape sequence denotes a code point from some complicated
character class, for example —

ExpandsOnNFC [...] /l Normalization length not 1

This is the set of all those unicode characters which do not have additive length in
normalization form C. The actual definition of the set has been abstracted away.

Now gplexwill generate the set from the definition (probably using the unicode
database) at scanner generation time. We want to be able to look up membership of
this set at scanneuntimefrom the data in the automaton tables. The following decla-
ration —

%charClassPredicate ExpandsOnNFC

causegplexto generate a public instance method of the scanner class, with the follow-
ing signature —

11 gplexfollows theFlex semantics byot adding rules explicitly marketNITIAL to inclusive start states.

8 THE INPUT FILE 57

public bool Is _[ExpandsOnNFC(int codepoint);
This method will test the given code-point for membership of the given set.
In general, for every nam&' in the NamelLista predicate function will be emitted
with the namds _N, with the signature —
public bool Is _N(int codepoint);

8.3.6 User Character Predicate Declaration

Character classes gplexmay be generated from any of the built-in character predicate
methods of theNET runtime, or any of the three other built-in functions tiggiex
itself defines (see Sectipn 9.p.5).

If a user needs to make use of additional character class predicates, then the user
may supply &PE-file containing a class which implements Q& T.Gplex.ICharTest-
Factoryinterface shown in Figufe 30. Tl@etDelegatenethod of the interface should

Figure 30: Interface for user character predicates

namespace QUT.Gplex
public delegate bool CharTest (int codePoint);

public interface ICharTestFactory {
CharTest GetDelegate(string name);
}

return delegates which implement the predicate functions. These might either be user-
written code, or existing library methods with matching signatures.

User character predicates are declared in_fa¥ specification with the following
syntax.

UserCharacterPredicateDeclaration

“%userCharPredicate " ident ‘[’ DottedName ‘]’ DottedName

This declaration associates the simple name ofdbat with the method specified in
the rest of the command. The first dotted name is the filename of the library in which
the interface implementation is found. The second dotted name is the name of the
class which implements the interface with the last component of the name being the
argument which is sent @GetDelegate

A use-example might belzEX file containing the following —

%userCharPredicate Favorites [MyAssembly.dll]MyClass.Test

This states that the identifi€avoritesis associated with the nanfestin the named
assembly. If, later in the specification, a character class is defined using the usual
syntax —

FavoritesSet [[:Favorites:]]
then the following will happen —

* gplexwill look for the PE-file “MyAssembly.dll " in the current directory and,
if successful, load it.

8 THE INPUT FILE 58

*

gplexwill use reflection to find the clagdyClassin the loaded assembly.

*

gplexwill create an instance of the class, and cast it td@fterTestFactoryype.

* gplexwill invoke GetDelegatavith argument Test ”.

*

gplexwill invoke the returned delegate for every codepoint in the unicode alpha-
bet, to evaluat&avoritesSet

If the PE-file cannot be found, or the assembly cannot be loaded, or the named class
cannot be found, or the class does not implement the interface, or the returned delegate
value is null, then an error occurs.

8.3.7 User Code in the Definitions Section

Any indented code, or code enclosed #{" ... “%}" delimiters is copied to the output
file.

UserCode
“9%" CodeBlock “9%4"

| IndentedCodeBlock

As usual, théemarkers must start at the left margin.

CodeBlockis arbitrary C# code that can correctly be textually included inside a
class definition. This may include constants, member definitions, sub-type definitions,
and so on.

IndentedCodeBlocis arbitrary C# code that can correctly be textually included
inside a class definition. It is distinguished from other declaratory matter by the fact
that each line starts with whitespcace.

It is considered good form to always use tBé{" ... “%]}” delimited form, so that
printed listings are easier to understand for human readers.

8.3.8 Comments in the Definitions Section

Block comments, / ... * ", in the definition section that begin in column zero,
that isunindentedcomments, are copied to the output file. Any indented comments
are taken as user code, and are also copied to the output file. Note that this is different
behaviour to comments in the rules section.

Single line 7/ " comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output. Consider the following user code fragment —

%
/[This is whitespace
void Foo() // This gets copied
{ /I This gets copied
} /I This is whitespace

%

The text-span of the code block reaches fromid ” through to the final right brace.
Single line comments within this text span will be copied to the scanner source file.
Single line comments outside this text span are treated as whitespace.

8 THE INPUT FILE 59

8.3.9 Option Declarations

The definitions section may include option markers with the same meanings as the
command line options described in Secfior] 2.1. Option declarations have the format —

OptionsDeclaration
“%option " OptionsList

OptionsList
Option
| OptionsList ‘, 'gpt Option

Options within the definitions section begin with thedption ” marker followed
by one or more option specifiers. The options may be comma or white-space separated.

The options correspond to the command line options. Options within the definitions
section take precedence over the command line options. A full list of options is in
Sectior 1b.

Some options make more sense on the command line than as hard-wired definitions,
but all commands are available in both modalities.

8.4 The Rules Section
8.4.1 Overview of Pattern Matching

The rules section specifies the regular expression patterns that the generated scanner
will recognize. Rules may be predicated on one or more of the start states from the
definitions section.

Each regular expression declaration may have an asso8atadntic ActionThe
semantic action is executed whenever an input sequence matches the regular expres-
sion. gplexalways returns thesngestinput sequence that matches any of the applicable
rules of the scanner specification. In the case of a tie, that is, when two or more patterns
of the same length might be matched, the pattern which appears first in the specification
is recognized.

The longest match rule means tigptexcreated scanners sometimes have to “back
up”. This can occur if one pattern recognizes strings that are proper prefixes of some
strings recognized by a second pattern. In this case, if some input has been scanned
that matches the first pattern, and the next character could belong to the longer, second
pattern, then scanning continues. If it should happen that the attempt to match the
longer pattern eventually fails, then the scanner must back up the input and recognize
the first pattern after all.

The main engine of pattern matching is a method na®eah This method is an
instance method of the scanner class. It uses the tables of the generated automaton
to update its state, invoke sematic actions whenever a pattern is matched, and return
integer values to its caller denoting the pattern that has been recognized.

8.4.2 Overall Syntax of Rules Section

The marker %%delimits the boundary between the definitions and rules sections.

8 THE INPUT FILE 60

RulesSection
PrologCodgp; RuleList EpilogCodgt

RuleList
RuleLisbpt Rule
| RuleLisbpt RuleGroup

PrologCode
UserCode

EpilogCode
UserCode
The user code in the prolog and epilog may be placedsfi“.. “%]}" delimiters or
may be an indented code block.

The CodeBlockof the optional prologJserCodeis placed at the start of thHécan
method. It can contain arbitrary code that is legal to place inside a metho&body
This is the place where local variables that are needed for the semantic actions should
be declared.

The CodeBlockof the optional epilogJserCodeis placed in a catch block at the
end of theScanmethod. This code is therefore guaranteed to be executed for every
termination ofScan This code block may contain arbitrary code that is legal to place
inside a catch block. In particular, it may access local variables of the prolog code
block.

Code interleavetietweerrules, whether indented or within the special delimiters,
has no sensible meaning, attracts a warning, and is ignored.

8.4.3 Rule Syntax

The rules have the syntax —

Rule
StartConditionLis§pt RegularExpression Action

StartConditionList
‘<’ Namelist ‘>’
| <R e
Action
S
| CodeLine
| ‘{" CodeBlock “}”

Start condition lists are optional, and are only needed if the specification requires more
than one start state. Rules that are predicated with such a list are only active when (one
of) the specified condition(s) applies. Rules without an explicit start condition list are
implicitly predicated on théNITIAL start condition.

The names that appear within start condition lists must exactly match names de-
clared in the definitions section, with just two exceptions. Start condition values cor-
respond to integers in the scanner, and the default start conthitidhAL always has

12And therefore cannot contain method definitions, for example.

8 THE INPUT FILE 61

number zero. Thus in start condition listz"“may be used as an abbreviation foH-
TIAL. All other numeric values are illegal in this context. Finally, the start condition
list may be ‘«<*>". This asserts that the following rule should apply in every start state.
The Action code is executed whenever a matching pattern is detected. There are
three forms of the actions. An action may be a single lin€®tode, on the same line
as the pattern. An action may be a block of code, enclosed in braces. The left brace
must occur on the same line as the pattern, and the code block is terminated when the
matching right brace is found. Finally, the special vertical bar character, on its own,
means “the same action as the next pattern”. This is a convenient rule to use if multiple
patterns take the same acfidn
Semantic action code typically loads up thdval semantic value structure, and
may also manipulate the start condition by call8®GIN(NEWSTATE, for example.
Note thatScanloops forever reading input and matching patterSeanexits only
when an end of file is detected, or when a semantic action executesia“ tokeri
statement, returning the integer token-kind value.
The syntax of regular expressions is treated in detail in Selction 9

8.4.4 Rule Group Scopes

Sometimes a humber of patterns are predicated on the same list of start conditions. In
such cases it may be convenient to use group scopeto structure the rules section.
Rule group scopes have the following syntax —

RuleGroup
StartConditionList ‘{" RuleList ‘}’

StartConditionList

‘<’ NamelList ‘>’

| [P LS

The rules that appear within the scope are all conditional on the start condition list
which begins the scope. The opening brace of the scope must immediately follow the
start condition list, and the opening and closing braces of the scope must each be the
last non-whitespace element on their respective lines.

As before, the start condition list is a comma-separated list of known start condition
names betweerx' and ‘>’ characters. The rule list is one or more rules, in the usual
format, each starting on a separate line. It is common for the embedded rules within
the scope to be unconditional, but it is perfectly legal to nest either conditional rules or
rule group scopes. In nested scopes the effect of the start condition lists is cumulative.
Thus —

<one>{
<two>{
foo { FooAction(); }
bar { BarAction(); }
}
}

has exactly the same effect as —

13And this is not just a matter of saving on typing. Whgplexperforms state minimization two accept
states are only able to be considered for merging if the semantic actions are the same. In this context “the
same” means using the same text span in the lex file.

9 REGULAR EXPRESSIONS 62

<one,two>{
foo { FooAction(); }
bar { BarAction(); }
}
or indeed as the plain, old-fashioned sequence —

<one,two>foo { FooAction(); }
<one,two>bar { BarAction(); }

It is sensible to use indentation to denote the extent of the scope. So this syntax neces-
sarily relaxes the constraint that rules must start at the beginning of the line.

Note that almost any non-whitespace characters following the left brace at the start
of a scope would be mistaken for a pattern. Thus the left brace must be the last character
on the line, except for whitespace. As usual, “whitespace” includes the casé#f a
style single-line comment.

8.4.5 Comments in the Rules Section

Comments in the rules section that begin in column zero, thatirfdenteccomments,
are not copied to the output file, and do not provoke a warning about “code between
rules”. They may thus be used to annotate the lex file itself.

Any indentedcommentsare taken as user code. If they occur before the first rule
they become part of the prolog of teanmethod. If they occur after the last rule they
become part of the epilog of tfecanmethod.

Single line 7/ " comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output.

8.5 The User Code Section

The user code section contains nothing but user code. Because of this, it is generally
unnecessary to use theq* ... % }” markers to separate this code from declarative
matter. All of the text in this section is copied verbatim into the definition for the
scanner class.

Sincegplex producesC# partial classes, it is often convenient to move all of the
user code into a “scan-helper” file to make the lex input files easier to read.

9 Regular Expressions

9.1 Concatenation, Alternation and Repetition

Regular expressions are patterns that define languages of strings over some alphabet.
They may define languages of finite or infinite cardinality. Regular expressigmar

must fit on a single line, and are terminated by any un-escaped white space such as a
blank character not in a character class.

9.1.1 Definitions

Regular expressions are made up of primitive atoms which are combined together by
means of concatenation, alternation and repetition. Concatenation is a binary operation,

9 REGULAR EXPRESSIONS 63

but has an implicit application in the same way as some algebraic notations dénote
to mean & multiplied byd".

If R; andR; are regular expressions defining languabesandL > respectively,
thenR; R, defines the language which consists of any string ftonrconcatentated
with any string fromL ,.

Alternation is a binary infix operation. It is denoted by the vertical bar character
‘| . If Ry andRy are regular expressions defining langualgesndL 5 respectively,
thenR,| Rs defines the language which consists all the strings from elither L 5.

Repetition is a unary operation. There are several forms of repetition with different
markers. The plus sign+* is used as a suffix, and denotes one or more repetitions
of its operand. IfR is a regular expressions defining languageéhen R+ defines
the language which consists one or more strings ftononcatenated together. Note
that the use of the word “repetition” in this context is sometimes misunderstood. The
defined language is not repetitions of @mestring fromL but concatenations of any
members of._.

9.1.2 Operator Precedence

The repetition markers have the highest precedence, concatenation next highest, with
alternation lowest. Sub-expressions of regular expressions are grouped using parenthe-
ses in the usual way.

If ‘a’, ‘b’ and ‘c’ are atoms denoting themselves, then the following regular ex-
pressions define the given languages.

a defines the language with just one strinta” }.
at+ defines the infinite language*a”, “aa”, “aaa”, ..
ab defines the language with just one strintab” }
alb defines the language with two stringéa”, “b” }.
ab|c defines the language with two string$ab”, “c” }
a(b|c) defines the language with two string$ab”, “ac”

ab+ defines the infinite languade‘ab”, “abb”, “abbb”, ... }.
(ab)+ defines the infinite language‘ab”, “abab”, “ababab ", ... }.

and so on.

9.1.3 Repetition Markers
There are three single-character repetition markers. These are —

* The suffix operator+’ defines a language which contains all the strings formed
by concatentating one or more strings from the language defined by its operand
on the left.

The suffix operator*’ defines a language which contains all the strings formed
by concatentating zero or more strings from the language defined by its operand
on the left. IfR is some regular expressidR? defines almost the same language
asR+. The language defined using the “star-closure” contains just one extra
element, the empty string "

The suffix operator?’ defines a language which concatentates zero or one string
from the language defined by its operand on the lefR i§ some regular expres-
sion,R? defines almost the same languag®ad he language defined using the
“optionality” operator contains just one extra element, the empty string *”

9 REGULAR EXPRESSIONS 64

The most general repetition marker allows for arbitrary upper and lower bounds
on the number of repetitions. The general repetition opefgtarM }, whereN and
M are integer constants, is is a unary suffix operator. When it is applied to a regular
expression it defines a language which concatenates betWesard M strings from
the language defined by the operand on its left. It is an er@§rig greater thar/. If
there is no upper bound, then the second numerical argument is left out, but the comma
remains. Note however that tHéV, } marker must not have whitespace after the
comma. Ingplexun-escaped whitespace terminates the candidate regular expression.
If both the second numerical argumeamidthe comma are taken out then the opera-
tor defines the language that contains all of the strings formed by concatenating exactly
N (possibly different) strings from the language defined by the operand on the left.
We have the following identities for any regular expresdtonr-

R+ = R{1,} /I One or more repetitions

R* = R{O,} Il Zero or more repetitions

R? = R{0,1} //Zero orone repetition
R{N} = R{N, N} //ExactlyN repetitions

As may be seen, all of the simple repetition operators can be thought of as special cases
of the genera{ N, M} form.

It is an interesting but not very useful fact that, conversely, every instance of the
general repetition form can be written in terms of concatenation, alternatiory; 'the
operator and thempty languag&vhich we denote. Here is a hint of the proof. First
we have two shift rules that allow us to reduce the lower repetition count by one at each
application, so long as the count remains non-negative —

R{N,} RR{N -1, } /I Start-index shift rule
R{N,M} = RR{N -1, M —1} [l Finite-index shift rule

After we have reduced the lower bound to zero, we can do an inductive step —

R{0,1} = (R) I/l Zero or one repetition
R{0,2} = (] R|RR) /I Zero, one or two repetitions
/l And so on ... with limit case —
R{0,} = R* Il Zero or more repetitions

Using this result we could, for example, write —

R{3,} = RRRR*
R{35 } RRR(¢| R | RR)

9.2 Regular Expression Atoms
9.2.1 Character Denotations

Characters that do not have a special meaning in a particular context, and which are
represented in thgplexinput alphabet are used to represent themselves. Thus the
regular expressiofoo defines a language that has just one string: “foo”.

Characters that have some format affect on the input must be escaped, so the usual
ci?érol characters i€#are denoted a8 ,\ a,\ b,\ f,\ n,\r,\t,\ v,\ 0, exactly as in
C

14Note however that the regular expression matches theASCII LF character, whilé\n matches the
length-2 literal string which could be written either@s\n" or as"\n" in a C#source file.

9 REGULAR EXPRESSIONS 65

In contexts in which a particular character has some special meaning, that character
must be escaped in the same way, by prefixing the charactenby a *

To denote characters that cannot be represented by a single byte in the input file,
various numerical escapes must be used. These are —

* Qctal escape8 ddd where thed are octal digits.

* Hexadecimal escapés hh where theh are hexadecimal digits.

* Unicode escapedu hhhh where theh are hexadecimal digits.

* Unicode escapedU hhhhhhhhwhere theh are hexadecimal digits.

In the final case the hexadecimal value of the codepoint must not exceed 0x10ffff.

Within a regular expressions the following characters have special meaning and
must be escaped to denote their uninterpreted meaning —

" ”“l”‘(’l‘)"‘{”‘}”‘[”‘] ”‘+”‘*”‘/”‘| ”‘ '

This list is in addition to the usual escapes for control characters and characters that
require numerical escapes.

The last character in the list is the space character. It appears here because a space
signals the end of the regular expressiogjiex

9.2.2 Lexical Categories — Named Expressions

Lexical categories are named regular expressions that may be used as atoms in other
regular expressions. Expressions may be named in the definitions section of the input
file. Used occurrences of these definitions may occur in other named regular expres-
sions, or in the patterns in the rules sectigpleximplements a simpledeclaration
before uséscoping rule for such uses.

Used occurrences of lexical categories are denoted by the name of the expression
enclosed in braceghamg”.

As an example, if we have named regular expressions for octal, hex and unicode
escape characters earlier in the input file, we may define all the numerical escapes as a
new named expression —

NumericalEscape {OctalEscape }| {HexEscape }| {UnicodeEscape }

Roughly speaking, theneaningof a used occurrence of a named expression is
obtained by substituting the named expression into the host expression at the location
of the used occurrence. In the casgypfexthe effect is as if the named expression is
surrounded by parentheses. This is different to the earliest implementatitufs<pf
which performed a textual substitution, but is equivalent to the semantkdgxof

This particular choice of semantics means that if we have an expression named as
“keyword” say —

keyword foo|bar
and then use this lexical category in another expression —
the {keyword } // Expands ashe(foo|bar) , not asthefoo|bar

The language defined by this expression contains two strrigisefoo ", “thebar "}.
With the originalLEX semantics the defined language would have contained the two
strings{ “thefoo ", “bar "}.

A consequence of this choice is that every named pattern must be a well-formed
regular expression.

9 REGULAR EXPRESSIONS 66

9.2.3 Literal Strings

Literal strings in the usudl# format are atoms in a regular expression.

The meaning of a literal string is exactly the same as the meaning of the regular
expression formed by concatenating the individual characters of the string. For sim-
ple cases, enclosing a character sequence in quotes has no effect. Thus the regular
expressiorioo matches the same pattern as the regular expre¥sioh .

However there are two reasons for using the string form: first, a string is an atom,
so the regular expressidfoo"+ defines the languagefoo ”, “foofoo 7, ...}, while
the regular expressidno+ defines the language'foo ”, “fooo ”, “foooo ”...}. Sec-
ondly, the only ordinary character that must be escaped within a literal strifig, is *
together of course with the control characters and those requiring numerical escapes.

This may make the patterns much more readable for humans.

9.2.4 Character Classes

Character classes are sets of characters. When used as atoms in a regular expression
they match any character from the set. Such sets are defined by a bracket-enclosed list
of characters, character-ranges and character predicates. There is no punctuation in the
list of characters, so the definition of of a named expression for the set of the decimal
digits could be written —

digits [0246813579]

The digits have deliberately been scrambled to emphasise that character classes are
unordered collections, and the members may be added in any order.

For sets whereangesof contiguous characters are members, we may use the char-
acter range mechanism. This consists of the first character in the range, the dash char-
acter -’, and the last character in the range. The same set as the last example then
could have been written as —

digits [0-9] /I Decimal digits

It is an error if the ordinal number of the first character is greater than the ordinal
number of the last character.

We can also defineegatedsets, where the members of the set are all those charac-
tersexceptthose that are listed as individual characters or character ranges. A negated
set is denoted by the caret charactérds the first character in the set. Thus, all of the
characterexceptthe decimal digits would be defined by —

notDigit [[0-9] [/l Everything but digits

Within a character class definition the following characters have special meaning:
‘1’, marking the end of the set; *, denotes the range operator, except as the first or last
character of the set; *, denotes set inverse, but only as the first character in the set. In
all locations where these characters have their special meaning they must be escaped
in order to denote their literal character value.

The dash characterdoes not need escaping if it is the first or last character in the
set, butgplexwill issue a warning to make sure that the literal meaning was intended.

The usual control characters are denoted by their escaped forms, and all of the
numerical escapes may be used within a character class.

9 REGULAR EXPRESSIONS 67

9.2.5 Character Class Predicates

Some of the character classes that occur with unicode scanners are too large to easily
define explicitly. For example, the set of all those unicode codepoints which (according
to ECMA-334 are possible first characters o€ identifier contains 92707 characters
which appear in 362 ranges.

Within a character class, the special syntfix PredicateMethod ” denotes all
of the characters from the selected alpt@mr which the correspondindNET base
class library method returns the true value. The implemented methods are —

* |sControl, IsDigit, IsLetter, IsLetterOrDigit, IsLower, IsNumber, IsS