
The GPLEX Scanner Generator
(Version 1.1.3 April 2010)

John Gough QUT

April 18, 2010

About GPLEX
Gardens PointLEX (gplex) generates scanners based on finite state automata. The
generated automata have the number of states minimized by default, and have a
large number of options for table compression. The default compression scheme
is chosen depending on the input alphabet cardinality, and almost always gives a
reasonable result. However a large number of options are available for the user to
tune the behavior if necessary.

The tool implements many of theFLEX extensions, including such things as start-
state stacks.

The generated scanners are designed to interface cleanly with bottom-up parsers
generated by Gardens Point Parser Generator (gppg). However,gplex-generated
scanners have been successfully used with both handwritten parsers and with
parsers generated byCOCO/R.

1

CONTENTS 2

Contents

I Introduction to GPLEX 6

1 Overview 6
1.1 Typical Usage . 6
1.2 The Interfaces . 7

1.2.1 The IColorScan Interface .11

2 Running the Program 12
2.1 Gplex Options .12

3 The Generated Scanner 16
3.1 Byte-Mode and Unicode-Mode .16
3.2 The Scanner File .17
3.3 Choosing the Input Buffer Class .18
3.4 How Buffering Works . 20
3.5 Multiple Input Sources .22
3.6 Class Hierarchy .24
3.7 Unicode Scanners .26
3.8 Case-Insensitive Scanners .27

3.8.1 Limitations . 27
3.9 UsingGPLEXScanners with Other Parsers27

4 Advanced Topics 28
4.1 Location Information . 28
4.2 Applications with Multiple Scanners28
4.3 Stacking Start Conditions .30
4.4 Settingyylvalandyylloc . 30

4.4.1 TheTValueType Parameter 31
4.4.2 TheTSpanType Parameter 31

4.5 Backtracking Information .32
4.6 Choosing Compression Options .33

5 Errors and Warnings 37
5.1 Errors . 37
5.2 Warnings . 41

6 Examples 42
6.1 Word Counting . 42
6.2 ASCIIStrings in Binary Files . 45
6.3 Keyword Matching . 45
6.4 The Code Page Guesser .46
6.5 Include File Example .47

7 Notes 48
7.1 Moving From v1.0 to v1.1.0 .48

7.1.1 Performance Issues .48
7.1.2 Removing Unicode Encoding Limitations49
7.1.3 Avoiding Name-Clashes with Multiple Scanners50

CONTENTS 3

7.1.4 Compliance withFxCop . 50
7.2 Implementation Notes .50
7.3 Limitations for Version 1.1.0 . 51
7.4 InstallingGPLEX . 51
7.5 Copyright . 52
7.6 Bug Reports .52

II The Input Language 53

8 The Input File 53
8.1 Lexical Considerations .53

8.1.1 Character Denotations .53
8.1.2 Names and Numbers .53

8.2 Overall Syntax .53
8.3 The Definitions Section .54

8.3.1 Using and Namespace Declarations54
8.3.2 Visibility and Naming Declarations55
8.3.3 Start Condition Declarations55
8.3.4 Lexical Category Definitions56
8.3.5 Character Class Membership Predicates56
8.3.6 User Character Predicate Declaration57
8.3.7 User Code in the Definitions Section58
8.3.8 Comments in the Definitions Section58
8.3.9 Option Declarations .59

8.4 The Rules Section .59
8.4.1 Overview of Pattern Matching59
8.4.2 Overall Syntax of Rules Section59
8.4.3 Rule Syntax .60
8.4.4 Rule Group Scopes .61
8.4.5 Comments in the Rules Section62

8.5 The User Code Section .62

9 Regular Expressions 62
9.1 Concatenation, Alternation and Repetition62

9.1.1 Definitions . 62
9.1.2 Operator Precedence .63
9.1.3 Repetition Markers .63

9.2 Regular Expression Atoms .64
9.2.1 Character Denotations .64
9.2.2 Lexical Categories – Named Expressions65
9.2.3 Literal Strings . 66
9.2.4 Character Classes .66
9.2.5 Character Class Predicates67
9.2.6 The Dot Metacharacter .67
9.2.7 Context Markers .68
9.2.8 End-Of-File Marker . 68

CONTENTS 4

10 Special Symbols in Semantic Actions 68
10.1 Properties of the Matching Text .68

10.1.1 The yytext Property .68
10.1.2 The yyleng Property .68
10.1.3 The yypos Property .69
10.1.4 The yyline Property .69
10.1.5 The yycol Property .69

10.2 Looking at the Input Buffer .69
10.2.1 Current and Lookahead Character69
10.2.2 The yyless Method .69
10.2.3 The yymore Method .70

10.3 Changing the Start Condition .70
10.3.1 TheBEGIN Method . 70
10.3.2 TheYYSTARTProperty . 70

10.4 Stacking Start Conditions .70
10.5 Miscellaneous Methods .71

10.5.1 TheECHOMethod . 71

III Using Unicode 72

11 Overview 72
11.1 Gplex Options for Unicode Scanners72
11.2 Unicode Options for Byte-Mode Scanners73

12 Specifying Scanners 74
12.1 Byte Mode Scanners .75
12.2 Character Class Predicates in Byte-Mode Scanners76
12.3 Unicode Mode Scanners .77
12.4 Overriding the Codepage Fallback at Application Runtime78
12.5 Adaptively Setting the Codepage .79

13 Input Buffers 80
13.1 String Input Buffers .80
13.2 File Input Buffers . 81

IV Appendices 83

14 Appendix A: Tables 84
14.1 Keyword Commands .84
14.2 Semantic Action Symbols .85

15 Appendix B: GPLEX Options 86
15.1 Informative Options .86
15.2 Boolean Options .86

16 Appendix C: Breaking Changes 88

LIST OF FIGURES 5

List of Figures

1 Typical Main Program Structure . 7
2 Main with Error Handler . 7
3 Scanner Interface ofGPPG . 8
4 Inheritance hierarchy of the Scanner class9
5 Features of theScannerClass . 10
6 Signatures ofSetSourcemethods . 10
7 Additional Methods for Scanner Actions11
8 Interface to the colorizing scanner11
9 Conceptual diagram of byte-mode scanner16
10 Conceptual diagram of unicode scanner16
11 Overall Output File Structure .17
12 Signatures ofScanBuff.GetBuffermethods 18
13 Detail of Character Decoding .19
14 Encoding of the example as UTF-8 file21
15 Encoding of the example as big-endian UTF-16 file21
16 Chaining input texts withyywrap 23
17 BufferContext handling methods .23
18 Nested include file handling .24
19 Standalone Parser Dummy Code .25
20 TheEolStateproperty . 25
21 Default Location-Information Class28
22 Methods for Manipulating the Start Condition Stack30
23 Location types must implementIMerge 31
24 Conceptual diagram of scanner with character equivalence classes . .34
25 Statistics forComponent Pascalscanners 36
26 Statistics forC#scanner . 36
27 User Code for Wordcount Example44
28 User Code for keyword matching example46
29 User code forIncludeTestexample 49
30 Interface for user character predicates57
31 Methods for Manipulating the Start Condition Stack71
32 Conceptual diagram of byte-mode scanner74
33 Conceptual diagram of unicode scanner75
34 Using theGetCodePagemethod . 79
35 Features of theScanBuffClass . 80
36 Signatures ofSetSourcemethods . 81
37 Detail of Character Decoding .82

6

Part I

Introduction to GPLEX

1 Overview

This paper is the documentation for thegplexscanner generator.
Gardens PointLEX (gplex) is a scanner generator which accepts a “LEX-like” spec-

ification, and produces aC# output file. The implementation shares neither code nor
algorithms with previous similar programs. The tool does not attempt to implement the
whole of thePOSIXspecification forLEX, however the program moves beyondLEX
in some areas, such as support for unicode.

The scanners produce bygplexare thread safe, in that all scanner state is carried
within the scanner instance. The variables that are global in traditionalLEXare instance
variables of the scanner object. Most are accessed through properties which expose
only a getter.

The implementation ofgplexmakes heavy use of the facilities of the 2.0 version
of the Common Language Runtime (CLR). There is no prospect of making it run on
earlier versions of the framework.

There are two main ways in whichgplex is used. In the most common case the
scanner implements or extends certain types that are defined by the parser on whose
behalf it works. Scanners may also be produced that are independent of any parser, and
perform pattern matching on character streams. In this “stand-alone” case thegplex
tool inserts the required supertype definitions into the scanner source file.

The code of the scanner derives from three sources. There is invariant code which
defines the class structure of the scanner, the machinery of the pattern recognition en-
gine, and the decoding and buffering of the input stream. These parts are defined in a
“ frame” file and a “buffers” file each of which is an embedded resource of thegplex
executable.

The tables which define the finite state machine that performs pattern recognition,
and the semantic actions that are invoked when each pattern is recognized are inter-
leaved with the code of the frame file. These tables are created bygplex from the
user-specified “*.lex ” input file.

Finally, user-specified code may be embedded in the input file. All such code is in-
serted in the main scanner class definition, as is explained in more detail in section 3.2.
Since the generated scanner class is declaredpartial it is also possible for the user
to specify code for the scanner class in aC#file separate from theLEX specification.

If you would prefer to begin by reviewing the input file format, then go directly to
Part II of this document.

1.1 Typical Usage

A simple, typical application using agplexscanner consists of two parts. A parser is
constructed usinggppg invoked with the /gplexoption, and a scanner is constructed
usinggplex. The parser object always has a property “Scanner” of AbstractScanner
type imported from theQUT.Gppgnamespace (see figure 3). The scanner specification
file will include the line —

%using ParserNamespace

1 OVERVIEW 7

whereParserNamespaceis the namespace of the parser module defined in the parser
specification. TheMain method of the application will open an input stream, construct
a scanner and a parser object using code similar to the snippet in Figure 1.

Figure 1: Typical Main Program Structure

static void Main(string [] args)
{

Stream file;
// parse input args, and open input file
Scanner scanner = new Scanner (file);
Parser parser = new Parser (scanner);
parser.Parse();
// and so on ...

}

For simple applications the parser and scanner may interleave their respective error
messages on the console stream. However when error messages need to be buffered
for later reporting and listing-generation the scanner and parser need to each hold a
reference to some shared error handler object. If we assume that the scanner has a field
named “yyhdlr ” to hold this reference, the body of the main method could resemble
Figure 2.

Figure 2: Main with Error Handler

ErrorHandler handler = new ErrorHandler ();
Scanner scanner = new Scanner (file);
Parser parser = new Parser (scanner, handler);
scanner.yyhdlr = parser.handler; // share handler ref.
parser.Parse();
// and so on ...

1.2 The Interfaces

All of the code of the scanner is defined within a single class “Scanner” inside the
user-specified namespace. All user-specified code in the input specification is copied
into the body of this class. The invariant buffering code defines string and file buffering
classes, and allows characters to be decoded by any of the encodings supported by the
.NET framework. For more detail on the buffering options, see section 3.3.

For the user ofgplexthere are several separate views of the facilities provided by
the scanner module. First, there are the facilities that are visible to the parser and the
rest of the application program. These include calls that create new scanner instances,
attach input texts to the scanner, invoke token recognition, and retrieve position and
token-kind information.

Next, there are the facilities that are visible to the semantic action code and other
user-specified code embedded in the specification file. These include properties of the
current token, and facilities for accessing the input buffer.

1 OVERVIEW 8

Finally, there are facilities that are accessible to the error reporting mechanisms that
are shared between the scanner and parser.

Each of these views of the scanner interface are described in turn. The special case
of stand-alone scanners is treated in section 3.6.

The Parser Interface

The parser “interface” is that required by theYACC-like parsers generated by the Gar-
dens Point Parser Generator (gppg) tool. Figure 3 shows the signatures. This abstract

Figure 3: Scanner Interface ofGPPG

public abstract class AbstractScanner <TValue, TSpan>
where TSpan : IMerge <TSpan>

{
public TValue yylval;
public virtual TSpan yylloc {

get { return default (TSpan); }
set { /* skip */ }

}
public abstract int yylex();
public virtual void yyerror(string msg,

params object [] args) {}
}

base class defines theAPI required by the runtime component ofgppg, the libraryShift-
ReduceParser.dll. The semantic actions of the generated parser may use the richerAPI
of the concreteScannerclass (Figure 5), but the parsing engine needs onlyAbstract-
Scanner.

AbstractScanneris a generic class with two type parameters. The first of these,
TValueis the “SemanticValueType” of the tokens of the scanner. If the grammar speci-
fication does not define a semantic value type then the type defaults toint .

The second generic type parameter,TSpan, is the location type that is used to track
source locations in the text being parsed. Most applications will either use the parser’s
default typeQUT.Gppg.LexLocation, shown in Figure 21, or will not perform location
tracking and ignore the field. Section 4.1 has more information on the default location
type.

The abstract base class defines two variables through which the scanner passes
semantic and location values to the parser. The first, the field “yylval”, is of whatever
“SemanticValueType” the parser defines. The second, the property “yylloc”, is of the
chosen location-type.

The first method ofAbstractScanner, yylex, returns the ordinal number correspond-
ing to the next token. This is an abstract method, which the code of the frame file
overrides.

The second method, the low-level error reporting routineyyerror, is called by the
parsing engine during error recovery. This method is provided for backward compata-
bility. The default method in the base class is empty. User code in the scanner is able
to override the emptyyyerror. If it does so the default error messages of the shift-
reduce parser may be used. Alternatively the low levelyyerror method may be ignored

1 OVERVIEW 9

completely, and error messages explicitly created by the semantic actions of the parser
and scanner. In this case the actions use theErrorHandler class, theTSpanlocation
objects, and numeric error codes. This is almost always the preferred approach, since
this allows for localization of error messages.

All gppg-produced parsers define an abstract “wrapper” class that instantiates the
genericAbstractScannerclass with whatever type arguments are implied by the “*.y ”
file. This wrapper class is namedScanBase. The inheritance hierarchy for the case of
gppgandgplexused together is shown in figure 4. For this example it is assumed that

Figure 4: Inheritance hierarchy of the Scanner class

AbstractScanner
<TValue, TSpan>

ScanBase

Scanner

Generic Abstract Class

Abstract Class

: AbstractScanner
<int,LexLocation>

: ScanBase

Sealed Class

AbstractScanner
defined in
ShiftReduceParser

MyParser.ScanBase
generated by GPPG
when invoked with
/gplex option

MyLexer.Scanner
generated by
GPLEX

the parser specification has declared “%namespace MyParser ” and the scanner
specification has declared “%namespace MyLexer ”.

ClassScanBasealways defines a default predicate methodyywrapwhich is called
whenever an end-of-file is detected in the input. The default method always returns
true , and may be overridden by the user to support multiple input sources (see Sec-
tion 3.5).

The scanner class extendsScanBaseand declares a public buffer field of theScan-
Buff type, as seen in Figure 5.ScanBuffis the abstract base class of the stream and
string buffers of the scanners. The important public features of this class are the prop-
erty that allows setting and querying of the buffer position, and the creation of strings
corresponding to all the text between given buffer positions. ThePosproperty returns
the current position of the input buffer. TheReadmethod ofScanBuffreturns the next
buffer element, but is never called by user code. The method is called by the scanner
object’sGetCodemethod, which finalizes the character decoding.

Everygplex-constructed scanner is either abyte-mode scanneror aunicode-mode
scanner. Byte-mode scanners define two public constructors, while unicode-mode
scanners define three. The default “no-arg” constructor creates a scanner instance that
initially has no buffer. The buffer may be added later using one of theSetSourcemeth-
ods. The other constructors take aSystem.IO.Streamargument, with an optionalcode
page fallbackargument.

There is a group of four overloaded methods namedSetSourcethat attach new
buffers to the current scanner instance. The first of these attaches a string buffer to the

1 OVERVIEW 10

Figure 5: Features of theScannerClass

// This class defined by gplex
public sealed partial class Scanner : ScanBase {

public ScanBuff buffer;
public void SetSource(string s, int ofst);
...

}

// This class defined by gppg, when run with the /gplex option
public abstract class ScanBuff {

public abstract int Read();
...
public abstract int Pos { get ; set ; }
public abstract string GetString(int begin, int end);

}

scanner, and is part of theIColorScaninterface (see Figure 8). This method provides
the only way to pass a string to the scanner.

Scanners that take file input usually have a file attached by the scanner constructor,
as shown in Figure 1. However, when the input source is changedSetSourcewill be
used. The signatures of theSetSourcemethod group are shown in Figure 6.

Figure 6: Signatures ofSetSourcemethods

// Create a string buffer and attach to the scanner. Start reading from offsetofst
public void SetSource(string source, int ofst);

// Create a line buffer from a list of strings, and attach to the scanner
public void SetSource(IList <string > source);

// Create a stream buffer for a byte-file, and attach to the scanner
public void SetSource(Stream source);

// Create a text buffer for an encoded file, with the specified default encoding
public void SetSource(Stream src, int fallbackCodePage);

The Internal ScannerAPI

The semantic actions and user-code of the scanner can access all of the features of
the AbstractScannerand ScanBasesuper types. The frame file provides additional
methods shown in Figure 7. The first few of these areYACCcommonplaces, and
report information about the current token.yyleng, yyposandyytextreturn the length
of the current token, the position in the current buffer, and the text of the token. The
text is created lazily, avoiding the overhead of an object creation when not required.
yytextreturns an immutable string, unlike the usual array or pointer implementations.

1 OVERVIEW 11

Figure 7: Additional Methods for Scanner Actions

public string yytext { get ; } // text of the current token
int yyleng { get ; } // length of the current token
int yypos { get ; } // buffer position at start of token
int yyline { get ; } // line number at start of token
int yycol { get ; } // column number at start of token
void yyless(int n); // move input position to yypos + n

internal void BEGIN(int next);
internal void ECHO(); // writes yytext to StdOut
internal int YY START { get ; set ; } // get and set start condition

yylessmoves the input pointer backward so that all but the firstn characters of the
current token are rescanned by the next call ofyylex.

There is no implementation, in this version, ofyymore. Instead there is a general
facility which allows the buffer position to be read or set within the input stream or
string, as the case may be.ScanBuff.GetStringreturns a string holding all text between
the two given buffer positions. This is useful for capturing all of the text between the
beginningof one token andendof some later token1.

The final three methods are only useful within the semantic actions of scanners.
The traditionalBEGIN sets the start condition of the scanner. The start condition is
an integer variable held in the scanner instance variable namedcurrentScOrd. Be-
cause the names of start conditions are visible in the context of the scanner, theBE-
GIN method may be called using the names known from the lex source file, as in
“BEGIN(INITIAL)”2. Start conditions are discussed further in Section 8.3.3.

1.2.1 The IColorScan Interface

If the scanner is to be used with theVisual Studio SDKas a colorizing scanner for a
new language service, thengppgis invoked with the /babeloption. In this case, as well
as defining the scanner base class,gppgalso defines theIColorScaninterface. Figure 8
is this “colorizing scanner” interface.Visual Studiopasses the source to be scanned to

Figure 8: Interface to the colorizing scanner

public interface IColorScan
{

void SetSource(string source, int offset);
int GetNext(ref int state, out int start, out int end);

}

1Note carefully however, that the default buffering implementation only guarantees that the text of the
current token will be available. If arbitrary strings from the input are required the/persistBufferoption must
be used.

2Note however that these names denote constantint values of the scanner class, and must have names
that are validC# identifiers, which do not clash withC# keywords. This is different to thePOSIX LEX
specification, where such names live in the macro namespace, and may have spellings that include hyphens.

2 RUNNING THE PROGRAM 12

theSetSourcemethod, one line at a time. An offset into the string defines the logical
starting point of the scan. TheGetNextmethod returns an integer representing the
recognized token. The set of valid return values forGetNextmay contain values that
the parser will never see. Some token kinds are displayed and colored in an editor that
are just whitespace to the parser.

The three arguments returned from theGetNextmethod define the bounds of the
recognized token in the source string, and update the state held by the client. In most
cases the state will be just the start-condition of the underlying finite state automaton
(FSA), however there are other possibilities, discussed below.

2 Running the Program

From the command linegplexmay be executed by the command —

gplex [options] filename

If no filename extension is given, the program appends the string “.lex ” to the given
name.

2.1 Gplex Options

This section lists all of the command line options recognized bygplex. Options may
be preceded by a ‘–’ character instead of the ‘/’ character. All of the following options
are recognized by a case-insensitive character matching algorithm.

/babel

With this option the produced scanner class implements the additional interfaces that
are required by theManaged Babelframework of theVisual Studio SDK. This option
may also be used with /noparser. Note that the Babel scanners may be unsafe unless
the /unicodeoption is also used (see section 3.7).

/caseinsensitive

With this option the produced scanner is insensitive to character case. The scanner does
not transform the input character sequences so that theyytextvalue for a token will
reflect the actual case of the input characters. There are some important limitations in
the use of this option in the unicode case. These are discussed Section 3.8.

/check

With this option the automaton is computed, but no output is produced. A listing will
still be produced in the case of errors, or if/listing is specified. This option allows
syntactic checks on the input to be performed without producing an output file.

/classes

For almost everyLEX specification there are groups of characters that always share the
same next-state entry. We refer to these groups as “character equivalence classes”, or
classesfor short. The number of equivalence classes is typically very much less that
the cardinality of the symbol alphabet, so next-state tables indexed on the class are

2 RUNNING THE PROGRAM 13

much smaller than those indexed on the raw character value. There is a small speed
penalty for using classes since every character must be mapped to its class before every
next-state lookup. This option produces scanners that use classes. Unicode scanners
implicitly use this option.

/codePageHelp

The code page option list is sent to the console. Any option that contains the strings
“codepage” and either “help” or “?” is equivalent.

/codePage:Number

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the code page with the specified number. If there is
no such code page known to the runtime library an exception is thrown and processing
terminates. Commonly used code pages are 1200 (utf-16), 1201 (unicodeFFFE) and
65001 (utf-8).

/codePage:Name

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the code page with the specified name. If there is no
such code page an exception is thrown and processing terminates.

/codePage:default

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the default code page of the host machine. This
option is the default for unicode scanners, if no code page option is specified.

/codePage:guess

In the event that an input file does not have a unicode prefix, the scanner will rapidly
scan the file to see if it contains any byte sequences that suggest that the file is either
utf-8or that it uses some kind of single-byte code page. On the basis of this scan result
the scanner will use either the default code page on the host machine, or interpret the
input as autf-8file. See Section 6.4 for more detail.

/codePage:raw

In the event that an input file does not have a unicode prefix, the scanner will use the
uninterpreted bytes of the input file. In effect, only code points from 0 to u+00ff will
be delivered to the scanner.

/frame:frame-file-path

Normally gplex uses an embedded resource as the frame file. This option allows a
nominated file to be used instead of the resource. Using an alternative frame file is
likely to be only of interest togplex-developers.

2 RUNNING THE PROGRAM 14

/help

In this case the usage message is produced. “/? ” is a synonym for “/help ”.

/listing

In this case a listing file is produced, even if there are no errors or warnings issued. If
there are errors, the error messages are interleaved in the listing output.

/noCompress

gplexcompresses its scanner next-state tables by default. In the case of scanners that
use character equivalence classes (see above) it compresses the character class-map by
default in the /unicodecase. This option turns off both compressions. (See Section 4.6
for more detail of compression options.)

/noCompressMap

This option turns off compression of the character equivalence-class map, independent
of the compression option in effect for the next-state tables.

/noCompressNext

This option turns off compression of the next-state tables, independent of the compres-
sion option in effect for the character equivalence-class map table.

/noEmbedBuffers

By default the code for the buffer classes is enclosed within the scanner namespace
in thegplexoutput file. With this option the buffer code is emitted within namespace
QUT.GplexBuffers, in a file named “GplexBuffers.cs ”. This is useful for applica-
tions with multiple scanners which may then share the common buffer definitions.

/noFiles

This option declares that the scanner does not require file input, but reads its input
from a string. For suitable cases this reduces the memory footprint of the scanner by
omitting all of the file IO classes.

/noMinimize

By default gplex performs state minimization on theDFSA that it computes. This
option disables minimization.

/noParser

By defaultgplexdefines a scanner class that conforms to an interface defined in an
imported parser module. With this optiongplexproduces a stand-alone scanner that
does not rely on any externally defined scanner super-classes.

2 RUNNING THE PROGRAM 15

/noPersistBuffer

By default file-based buffering ingplexscanners uses double buffering but does not
reclaim buffer space during the scanning of large files. This option turns on reclaiming
of buffer space. The option reduces the memory footprint of the scanner on very large
input files, but cannot be used for those applications which requireScanBuff.GetString
to extract strings from the input buffer at arbitrary positions.

/out:out-file-path

Normallygplexwrites an outputC#file with the same base-name as the input file. With
this option the name and location of the output file may be specified.

/out:–

With this option the generated output is sent toConsole.Out. If this option is used
together with /verbosethe usual progress information is sent toConsole.Error.

/parseOnly

With this option theLEX file is checked for correctness, but no automaton is computed.

/squeeze

This option specifies that thegplex should attempt to produce the smallest possible
scanner, even at the expense of runtime speed.

/stack

This option specifies that the scanner should provide for the stacking of start conditions.
This option makes available all of the methods described in Section 4.3.

/summary

With this option a summary of information is written to the listing file. This gives
statistics of the automaton produced, including information on the number of back-
track states. For each backtrack state a sample character is given that may lead to a
backtracking episode. It is the case that if there is even a single backtrack state in the
automaton the scanner will run slower, since extra information must be stored during
the scan. These diagnostics are discussed further in section 4.5.

/unicode

By defaultgplexproduces scanners that use 8-bit characters, and which read input files
byte-by-byte. This option allows for unicode-capable scanners to be created. Using
this option implicitly uses character equivalence classes. (See Section 3.7 for more
detail.)

/utf8default

This option is deprecated. Use “/codePage:utf-8 ” instead. The deprecated “/no-

Utf8default ” option is equivalent to “/codePage:raw ”.

3 THE GENERATED SCANNER 16

/verbose

In this case the program chatters on to the console about progress, detailing the various
steps in the execution. It also annotates each table entry in theC# automaton file with
a shortest string that leads to that state from the associated start state.

/version

The program sends its characteristic version string to the console.

3 The Generated Scanner

3.1 Byte-Mode and Unicode-Mode

Every scanner generated bygplexoperates either inbyte-mode, or in unicode-mode.
The conceptual form of a byte-mode scanner is shown in Figure 9. In this mode,

Figure 9: Conceptual diagram of byte-mode scanner

Nextstate
Function

Current State

Un-encoded
byte value

Next
State

the next state of the scanner automaton is determined by the next-state function from
the current input byte and the current state. The bytes of the input stream are used
uninterpreted.

In unicode mode the next state of the scanner automaton is determined by the next-
state function from the currentunicode code pointand the current state. The sequence
of code points may come from a string ofSystem.Charvalues, or from a file. Unicode
code-points have 21 significant bits, so some interpretation of the input is required for
either string or file input. The conceptual form of the scanner is shown in Figure 10 for
file input. The corresponding diagram forstring input differs only in that the input is a

Figure 10: Conceptual diagram of unicode scanner

Character
Decoding

Nextstate
Function

Current State

Encoded
byte stream

Next
State

Codepoint

sequence ofSystem.Char, rather than a stream of bytes.

3 THE GENERATED SCANNER 17

3.2 The Scanner File

The program creates a scanner file which by default is namedfilename.cs wherefile-
nameis the base name of the given source file name.

The file defines a classScanner, belonging to a namespace specified in the lex input
file. This class defines the implementation of the interfaces previously described.

The format of the output file is defined by a template file namedgplexx.frame.
User defined and tool generated code is interleaved with this file to produce the final
C# output file. Since Version 1.1.0 ofgplexthe frame file is an embedded resource in
the tool.

The overall structure of theC# output file is shown in Figure 11. There are seven

Figure 11: Overall Output File Structure

using System;
using System.IO;
using ... ;
user defined using declarations
user defined namespace declaration
{

public sealed partial class Scanner : ScanBase
{

generated constants go here
user code from definitions goes here
int state;
... // lots more declarations
generated tables go here

... // all the other invariant code
// The scanning engine starts here
int Scan() { // Scan is the core of yylex

optional user supplied prolog
... // invariant code of scanning automaton
user specified semantic actions
optional user supplied epilog

}
user-supplied body code from “usercode” section

}
}
Scanners with embedded buffers place buffer code here

places where user code may be inserted. These are shown in red in the figure. They
are —

* Optional additional “using” declarations that other user code may require for its
proper operation.

* A namespace declaration. This is not optional.

* Arbitrary code from within the definitions section of the lex file. This code
typically defines utility methods that the semantic actions will call.

3 THE GENERATED SCANNER 18

* Optional prolog code in the body of theScanmethod. This is the main engine
of the automaton, so this is the place to declare local variables needed by your
semantic actions.

* User-specified semantic actions from the rules section.

* Optional epilog code. This actually sits inside afinally clause, so that all exits
from theScanmethod will execute this cleanup code. It might be important to
remember that this code executesafter the semantic action has said “return ”.

* Finally, the “user code” section of the lex file is copied into the tail of the scanner
class. In the case of stand-alone applications this is the place where “public

static void Main ” will appear.

As well as these, there is also all of the generated code inserted into the file. This may
include some tens or even hundreds of kilobytes of table initialization. There are actu-
ally several different implementations ofScanin the frame file. The fastest one is used
in the case of lexical specifications that do not require backtracking, and do not have
anchored patterns. Other versions are used for every one of the eight possible com-
binations of backtracking, left-anchored and right-anchored patterns.gplexstatically
determines which version to “#define ” out.

Note however that theScannerclass is markedpartial . Much of the user code
that traditionally clutters up the lex specification can thus be moved into a separate
scan-helper file containing a separate part of the class definition.

3.3 Choosing the Input Buffer Class

Scanner code interacts with a buffer object of theScanBuffclass.ScanBuffis an ab-
stract, public class. The concrete classes derived fromScanBuffare all private. Buffers
of the derived classes are instantiated by calling a static factory methodScanBuff.Get-
Buffer. There are four overloads of this method, as shown in Figure 12

Figure 12: Signatures ofScanBuff.GetBuffermethods

// Create a string buffer.
public static ScanBuff GetBuffer(string source);

// Create a line buffer from a list of strings
public static ScanBuff GetBuffer(IList <string > source);

// Create a BuildBuffer for a byte-file
public static ScanBuff GetBuffer(Stream source);

// Create a BuildBuffer for an encoded file, with the specified default encoding
public static ScanBuff GetBuffer(Stream source,

int fallbackCodePage);

There are three concrete implementations of the abstractScanBuffclass ingplex.
There are two string input buffer classes and theBuildBuff class that handles all file
input. The buffer code is invariant, and is either emitted as the separate source file

3 THE GENERATED SCANNER 19

GplexBuffers.csor is embedded in the scanner source file. This behavior is controlled
by the/noEmbedBuffersoption flag. The default is that buffer code is embedded.

The File Input Buffers

The left-most function box in figure 10 expands for file input as shown in Figure 13.
The tranformation from the input byte stream to the sequence of unicode code points
is performed in two steps.

Figure 13: Detail of Character Decoding

Character
DecodingEncoded

byte stream

String-
Builder
buffer

Surrogate
pair handling Codepointchar char

First, the byte sequence in the file is decoded into a sequence of values of thechar

type. The decoding is performed bySystem.Globalizationmethods from the.NETbase
class libraries.

The sequence ofchar values are held in a buffer ofStringBuilderclass. The char-
acter index in this buffer is the value which is used as the abstract “input position”
attribute of the recognized tokens.

Finally, the unicode code points are extracted from the buffer by the scanning en-
gine’s GetCodemethod. This method interprets any surrogate pairs, and returns an
integer value to the automaton.

The structure, as shown in the figure, is invariant for all file input. However the
semantics of the two processing blocks are variable. For all forms of file input, the
scanner opens a file stream with code equivalent to the following —

FileStream file = new FileStream (name, FileMode .Open);
Scanner scnr = new Scanner ();
scnr.SetSource(file, . . .);

The code of theScannerclass that is emitted bygplexis customized according to the
/unicodeoption. If the unicode option is not in force the scanner’sScanBuffobject
is instantiated by calling the stream-argument version ofSetSource(third method in
figure 6). In this case the buffer will have an empty character decoder that simply
reads single bytes and returns the correspondingchar value. For the byte-mode case
surrogate pairs cannot arise, so the second processing block is empty also.

If the unicode option is in force, the two-argument overload ofSetSource(last
method in figure 6) will be called. This version ofSetSourcereads the first few bytes
of the stream in an attempt to find a valid unicode prefix (BOM).

If a valid prefix is found corresponding to aUTF-8 file, or to one or otherUTF-
16 file formats, then a correspondingStreamReaderobject is created. If no prefix is
found, then the encoding of the character decoder will be determined from thegplex
“ /codePage: ” option. In the event that no code page option is in force the default
code page for the host machine is chosen.

Note that the choice of alphabet cardinality for the scanner tables is determined at
scannerconstructiontime, based on the value of the/unicodeoption. The choice of
buffer implementation, on the other hand, is determined atruntime, when the input file
is opened. It is thus possible as a corner case that a unicode scanner will open an input
file as a byte-file containing only 8-bit characters. The scanner will work correctly,

3 THE GENERATED SCANNER 20

and will also work correctly with input files that contain unicode data in any of the
supported formats.

String Input Buffers

If the scanner is to receive its input as one or more string, the user code passes the input
to one of theSetSourcemethods. In the case of a single string the input is passed to the
method, together with a starting offset value —

public void SetSource(string s, int ofst);

This method will create a buffer object of theStringBuff type. Colorizing scanners for
Visual Studioalways use this method.

An alternative interface uses a data structure that implements theIList<string >
interface —

public void SetSource(IList <string > list);

This method will create a buffer object of theLineBuff type. It is assumed that each
string in the list has been extracted by a method likeReadLinethat will remove the end
of line marker. When the end of each string is reached the bufferReadmethod will
report a ‘\n ’ character, for consistency with the other buffer classes. In the case that
tokens extend over multiple strings in the listbuffer.GetStringwill return a string with
embedded end of line characters.

3.4 How Buffering Works

The scanning engine thatgplexproduces is a finite state automaton (FSA)3 This FSA
deals with code-points from either theByteor Unicodealphabets, as described in sec-
tion 3.1.

Files containing character data may require as little as one byte to encode a unicode
code-point, or as many as four bytes in the worst case of a legal unicode code-point in
anutf-8 file. TheStreamReaderobject that decodes the bytes of the file supplieschar

values to theStringBuilderbuffer structure. Some instances of stream readers encap-
sulate state, and do not provide a mapping from code point index to file byte-position.
As a consequence the index in thebuffer must be used as a proxy for file position. It
follows that encoded input streams are only seekable within theStringBuilderbuffer
structure. For those applications which need to callGetStringon arbitrary buffer loca-
tions, the (default)/persistBufferoption must be used to prevent reclaiming of buffer
space.

Strings containing character data from the full unicode alphabet may require two
char values to encode a single code-point. Decoders based onchar -buffers detect
surrogate characters and read a second value when needed.

Finally, it should be noted that textual data exported from the scanner, such as
yytext, are necessarily ofSystem.Stringtype. This means that if the sequence of code-
points contains points beyond the 64k boundary (that is, not from theBasic Multi-
lingual Plane) those points must be folded back into surrogate pairs inyytextand
buffer.GetSource.

3(Note for the picky reader) Well, the scanner isusuallyanFSA. However, the use of the “/stack” option
allows state information to be stacked so that in practice suchgplex-generated recognizers can have the power
of a push-down automaton.

3 THE GENERATED SCANNER 21

An example

Suppose an input text begins with a character sequence consisting of four unicode
characters: ‘\u0061 ’, ‘ \u00DF ’, ‘ \u03C0 ’, ‘ \U000100AA ’. These characters are:
lower case letter ‘a’, Latin lower casesharp sas used in German, Greek lower case
pi, and the Linear-B ideogram for “garment”. For all four characters the predicate
IsLetteris true so the four characters might form a programming language identifier in
a suitably permissive language.

Figure 14 shows what this data looks like as a UTF-8 encoded file. Figure 15 shows
what the data looks like as a big-endian UTF-16 file. In both cases the file begins with a

Figure 14: Encoding of the example as UTF-8 file

a ß π(prefix)

BF BFBB 61 C3 9F CF 80 F1 80 82 AA

yytext = “aßπ\uD800\uDCAA”

Figure 15: Encoding of the example as big-endian UTF-16 file

a ß π(prefix)

FE 00FF 61 00 DF 03 C0 D8 00 DC AA

yytext = “aßπ\uD800\uDCAA”

representation of the file prefix characteru+feff . The encoded form of this character
occupies three bytes in a UTF-8 file, and two in a UTF-16 file. Reading this prefix
allows the scanner to discover in which format the following data is encoded.

The UTF-8 file directly encodes the code-points using a variable-length represen-
tation. This example shows all encoded lengths from one to four. The UTF-16 file
consists of a sequence ofushort values, and thus requires the use of a surrogate pair
for the final code-point of the example, since this has more than sixteen significant bits.

In every case the sequence of code-points delivered to theFSAwill be: 0x61,
0xdf, 0x3c0, 0x100aa . Theyytextvalue returned by the scanner is the same in
each case, using the same surrogate pair as in the UTF-16 file. For string input, the
input string would be exactly the same as for the big-endian UTF-16 case, but without
the prefix code.

Files Without Prefix

The case of text files that do not have a prefix is problematic. What should a unicode
scanner do in the case that no prefix is found? In version 1.1.0 ofgplexthe decision is
made according to thefallback code pagesetting.

The default setting for the fallback code page ofgplex-generated scanners is to read
the input byte-by-byte, and map the byte-values to unicode using the default code page

3 THE GENERATED SCANNER 22

of the host machine. Other possible fallbacks are to use a specified code page, to use
the byte-value uninterpreted (“raw”), or to rapidly scan the input file looking for any
characteristic patterns that indicate the encoding.

At scanner generation time the user may specify the required fallback behavior.
Generated scanners also contain infrastructure that allows the scanner’s host applica-
tion to override the generation-time default. This overriding may be done on a file-by-
file basis.

A complete treatment of the unicode option, including the treatment of fallback
code pages is detailed in Part III of this document.

3.5 Multiple Input Sources

There are two common scenarios in which multiple input sources are needed. The
first occurs when multiple input sources are treated as though concatenated. Typically,
when one input source is exhausted input is taken from the next source in the sequence.

The second scenario occurs in the implementation of “include files” in which a
special marker in the current source causes input to be read from an alternative source.
At some later stage input may again be read from the remaining text of the original
source.

gplex includes facilities to enable the encoding of both of these behaviors, and
examples of both are included in Section 6.

Whenever an end-of-input event is found by the scanner,EOF processing is in-
voked. If there is an explicit user action attached to theEOF-event for the current
start-state then that specified action is executed. If there is no such action, or if the
specified action completes without returning a token value, then the defaultEOF ac-
tion is executed. The default action calls the predicateyywrap(). If yywrap returns
true the call toyylexwill return Tokens.EOFthus causing the parser to terminate. If,
on the other hand, the predicate returnsfalse then scanning continues.

The ScanBaseclass contains a default implementation ofyywrap, which always
returnstrue . Users may override this method in theirScannerclass. The user-supplied
yywrap method will determine whether there is further input to process. If so, the
method will switch input source and returnfalse 4. If there is no further input, the
user-suppliedyywrapmethod will simply returntrue .

Chaining Input Texts

When input texts are chained together, theyywrap method may be used to manage
the buffering of the sequence of sources. A structured way to do this is to place the
texts (filenames, or perhaps strings) in a collection, and fetch the enumerator for that
collection. Figure 16 is a template for theyywrapmethod. The code for creation and
initialization of the new input buffer depends on the buffer class that is appropriate for
the next input text. In the case of aStringBuffa call to the firstSetSourcemethod —

public void SetSource(string str, int ofst);

does everything that is required.
The case of a file buffer is slightly more complicated. The file stream must be

created, and a new buffer allocated and attached to the scanner. For a byte-stream the
following code isalmostsufficient.

4Beware that returning falsewithout replacing the input source is yet another way of making a scanner
hang in a loop.

3 THE GENERATED SCANNER 23

Figure 16: Chaining input texts withyywrap

protected override bool yywrap() {
if (enumerator.MoveNext()) { // Is there more input to process?

SetSource(...) // Choice of four overloads here
return false

} else
return true ; // And cause yylex to return EOF

}

SetSource(new FileStream (filename, FileMode .Open));

Of course, sensible code would open the file within atry block to catch any exceptions.
In the unicode case, a call to the fourth method in Figure 6 will create a buffer for

an encoded text file.

The BufferContext Class

Switching input sources requires replacement of thebufferobject of the executing scan-
ner. When a new input source is attached, some associated scanner state variables need
to be initialized. The buffer and associated state values form theBufferContext. It is
values of this type that need to be saved and restored for include-file handling.

There are predefined methods for creating values ofBufferContexttype from the
current scanner state, and for setting the scanner state from a suppliedBufferContext
value. The signatures are shown in Figure 17. In cases where include files may be

Figure 17: BufferContext handling methods

// Create context from current buffer and scanner state
BufferContext MkBuffCtx() { ... }

// Restore buffer value and associated state from context
void RestoreBuffCtx(BufferContext value) { ... }

nested, context values are created byMkBuffCtxand are then pushed on a stack. Con-
versely, when a context is to be resumedRestoreBuffCtxis called with the popped value
as argument.

TheBufferContexttype is used in the same way forall types of buffer. Thus it is
possible to switch from byte-files to unicode files to string-input in an arbitrary fash-
ion. However, the creation and initialization of objects of the correct buffer types is
determined by user code choosing the appropriate overload ofSetSourceto invoke.

Include File Processing

If a program allows arbitrary nesting of include file inclusion then it is necessary to
implement a stack of savedBufferContextrecords. Figure 18 is a template for the user
code in such a scanner. In this case it is assumed that the pattern matching rules of

3 THE GENERATED SCANNER 24

Figure 18: Nested include file handling

Stack <BufferContext > bStack = new Stack <BufferContext >();

private void TryInclude(string filename) {
try {

BufferContext savedCtx = MkBuffCtx();
SetSource(new FileStream (filename, FileMode .Open));
bStack.Push(savedCtx);

} catch { ... }; // Handle any IO exceptions
}

protected override bool yywrap() {
if (bStack.Count == 0) return true;
RestoreBuffCtx(bStack.Pop());
return false ;

}

the scanner will detect the file-include command and parse the filename. The semantic
action of the pattern matcher will then callTryInclude.

This template leaves out some of the error checking detail. The complete code of a
scanner based around this template is shown in the distributed examples.

3.6 Class Hierarchy

The scanner file produced bygplexdefines a scanner class that extends an inherited
ScanBaseclass. Normally this super class is defined in the parser namespace, as seen
in Figure 4. As well as this base class, the scanner relies on several other types from
the parser namespace.

The enumeration for the token ordinal values is defined in theTokensenumeration
in the parser namespace. Typical scanners also rely on the presence of anErrorHandler
class from the parser namespace.

Stand-Alone Scanners

gplex may be used to create stand-alone scanners that operate without an attached
parser. There are some examples of such use in theExamplessection.

The question is: if there is no parser, then where does the code ofgplexfind the
definitions ofScanBaseand theTokensenumeration?

The simple answer is that thegplexx.framefile contains minimal definitions of the
types required, which are activated by the/noparseroption on the command line or in
the lex specification. The user need never see these definitions but, just for the record,
Figure 19 shows the code.

Note that mention ofAbstractScanneris unecessary, and does not appear. If a
standalone, colorizing scanner is required, thengplexwill supply dummy definitions
of the required features.

3 THE GENERATED SCANNER 25

Figure 19: Standalone Parser Dummy Code

public enum Tokens {
EOF = 0, maxParseToken = int .MaxValue
// must have just these two, values are arbitrary

}

public abstract class ScanBase {
public abstract int yylex();
protected virtual bool yywrap() { return true ; }

}

Colorizing Scanners andmaxParseToken

The scanners produced bygplex recognize a distinguished value of theTokensenu-
meration named “maxParseToken”. If this value is defined, usually in thegppg-input
specification, thenyylexwill only return values less than this constant.

This facility is used in colorizing scanners when the scanner has two callers: the
token colorizer, which is informed ofall tokens, and the parser which may choose to
ignore such things as comments, line endings and so on.

gplexuses reflection to check if the special value of the enumeration is defined. If
no such value is defined the limit is set toint .MaxValue .

Colorizing Scanners andManaged Babel

Colorizing scanners intended for use by theManaged Babelframework of theVisual
Studio SDKare created by invokinggplex with the /babel option. In this case the
Scannerclass implements theIColorScaninterface (see figure 8), andgplexsupplies
an implementation of the interface. TheScanBaseclass also defines two properties for
persisting the scanner state at line-ends, so that lines may be colored in arbitrary order.

ScanBasedefines the default implementation of a scanner property,EolState, that
encapsulates the scanner state in anint32. The default implementation is to identify
EolStateas the scanner start state, described below. Figure 20 shows the definition
in ScanBase. gplexwill supply a final implementation ofCurrentScbacked by the

Figure 20: TheEolStateproperty

public abstract class ScanBase {
... // Other (non-babel related) ScanBase features
protected abstract int CurrentSc { get ; set ; }
// The currentScOrd value of the scanner will be the backing field for CurrentSc

public virtual int EolState {
get { return CurrentSc; }
set { CurrentSc = value ; } }

}

3 THE GENERATED SCANNER 26

scanner state fieldcurrentScOrd, the start state ordinal.
EolStateis a virtual property. In a majority of applications the automatically gener-

ated implementation of the base class suffices. For example, in the case of multi-line,
non-nesting comments it is sufficient for the line-scanner to know that a line starts or
ends inside such a comment.

However, for those cases where something more expressive is required the user
must overrideEolStateso as to specify a mapping between the internal state of the
scanner and theint32 value persisted byVisual Studio. For example, in the case of
multi-line, possibly nested comments a line-scanner must know howdeepthe comment
nesting is at the start and end of each line. The user-supplied override ofEolStatemust
thus encode both theCurrentScvalueanda nesting-depth ordinal.

3.7 Unicode Scanners

gplexis able to produce scanners that operate over the whole unicode alphabet. How-
ever, theLEX specification itself is always an 8-bit file.

Specifying a Unicode Scanner

A unicode scanner may be specified either on the command line, or with an option
marker in theLEX file. Putting the option in the file is always the preferred choice,
since the need for the option is a fixed property of the specification. It is an error to
include character literals outside the 8-bit range without specifying the /unicodeoption.

Furthermore, the use of the unicode option implies the /classesoption. It is an error
to specifyunicodeand then to attempt to specify /noClasses.

Unicode characters are specified by using the usual unicode escape formats\u xxxx
and\U xxxxxxxxwherex is a hexadecimal digit. Unicode escapes may appear in literal
strings, as primitive operands in regular expressions, or in bracket-delimited character
class definitions.

Unicode Scanners and the Babel Option

Scanners generated with thebabeloption should always use theunicodeoption also.
The reason is that although theLEX specification might not use any unicode literals, a
non-unicode scanner will throw an exception if it scans a string that contains a character
beyond the latin-8 boundary.

Thus it is unsafe to use the babel option without the unicode option unless you can
absolutely guarantee that the scanner will never meet a character that is out of bounds.
gplexwill issue a warning if this dangerous combination of options is chosen.

Unicode Scanners and the Input File

Unicode scanners that read from strings use the sameStringBuff class as do non-
unicode scanners. However, unicode scanners that read from filestreams must use
a buffer implementation that reads unicode characters from the underlying byte-file.
The current version supports any file encoding for which the.NET library supplies a
StreamReader.

When an scanner object is created with a filestream as argument, and the /unicode
option is in force, the scanner tries to read an encoding prefix from the stream. An
appropriateStreamReaderobject is created, and attached to a buffer of theBuildBuffer

3 THE GENERATED SCANNER 27

class. If no prefix is found the input stream position is reset to the start of the file and
the encoding setting of the stream reader will depend on thefallback code pagesetting.

3.8 Case-Insensitive Scanners

The use of the/caseInsensitiveoption causesgplexto generate a case-insensitive scan-
ner. In effect, the option ensures that the same accept state will be reached by every
case-permuted version of each input that reaches that state.

indexItalyytext When a case-insensitive scanner reads input, it does not transform
the input characters. This means that theyytextstrings will preserve the original casing
in the input.

Scanners that rely on a user-supplied helper method for keyword recognition will
need to ensure that the helper method performs its own case-normalization.

3.8.1 Limitations

There are a few things to consider if you use the case-insensitive option for a unicode
scanner.gplextransforms the input specification on a character by character basis using
the .NET ToUpperand ToLowermethods. These functions are necessarily culture-
sensitive, andgplexuses the culture setting of the machine on which it is running. If
this is different to the culture setting on which the generated scanner runs then there
may be slightly different results. As well, there are examples where case transformation
is inherently inaccurate because, for example, a given lower case character transforms
into twoupper case characters.

Characters outside thebasic multilingual plane, that is, code points that require the
use of surrogate pairs ofchar values, do not even get checked for case.

Finally, it should be noted that the construction of character equivalence classes for
specifications that include large unicode character sets is computationally intensive.
Thus specifications that include sets such as[[:IdentifierStartCharacter:]] ,
with its 90 000+ elements may add several seconds to the scanner generation time.
However, thegenerated scannerwill run at the same speed as the corresponding case-
sensitive version.

3.9 UsingGPLEX Scanners with Other Parsers

Whengplex-scanners are used with parsers that offer a different interface to that of
gppg, some kind of adapter classes may need to be manually generated. For example
if a parser is used that is generated bygppgbut not using the “/gplex” command line
option, then adaptation is required. In this case the adaptation required is between
the rawAbstractScannerclass provided byShiftReduceParserand theScanBaseclass
expected bygplex.

A common design pattern is to have a tool-generated parser that creates apartial
parser class. In this way most of the user code can be placed in a separate “parse
helper” file rather than having to be embedded in the parser specification. The parse
helper part of the partial class may also provide definitions for the expectedScanBase
class, and mediate between the calls made by the parser and theAPI offered by the
scanner.

4 ADVANCED TOPICS 28

4 Advanced Topics

4.1 Location Information

Parsers created bygppghave default actions to track location information in the input
text. Parsers define a classLexLocation, that is the default instantiation of theTSpan
generic type parameter. The default type is simply mapped to the text span format used
by Visual Studio.

The parsers call the merge method at each reduction, expecting to create a loca-
tion object that represents an input text span from the start of the first symbol of the
production to the end of the last symbol of the production.gppgusers may substi-
tute other types for the default, provided that they implement a suitableMergemethod.
Section 4.4.2 discusses the non-default alternatives. Figure 21 is the definition of the
default class. If agplexscanner ignores the existence of the location type, the parser

Figure 21: Default Location-Information Class

public class LexLocation : IMerge <LexLocation >
{

public int sLin; // Start line
public int sCol; // Start column
public int eLin; // End line
public int eCol; // End column
public LexLocation() {};

public LexLocation(int sl; int sc; int el; int ec)
{ sLin=sl; sCol=sc; eLin=el; eCol=ec; }

public LexLocation Merge(Lexlocation end) {
return new LexLocation (sLin,sCol,end.eLin,end.eCol);

}
}

will still be able to access some location information using theyyline, yycolproperties,
but the default text span tracking will do nothing5.

If a gplexscanner needs to create location objects for the parser, then it must do it
for all tokens, otherwise the automatic text-span merging of the parser will not work.
The logical place to create the location objects is in the epilog of the scan method. Code
after the final rule in the rules section of a lex specification will appear in afinally

clause in theScanmethod. For the default location type, the code would simply say —
yylloc = new LexLocation (tokLin,tokCol,tokELin,tokECol)

4.2 Applications with Multiple Scanners

Applications that use multiplegplex-generated scanners have a variety of possible
structures. First of all, there is the option of placing each of the scanners in a sepa-
rate .NET assembly, perhaps shared with the associated parser. It is also possible to
place all of the scanners (and parsers) in the same assembly.

5The parser will not crash by trying to callMergeon a null reference, because the default code is guarded
by a null test.

4 ADVANCED TOPICS 29

There are two mechanisms that may be used to avoid name-clashes between the
tool-generated types. The code of each scanner may be placed within a distinct names-
pace so that the fully qualified names of the types are distinct. Alternatively, the default
names of the token, scanner and scanner base classes may be overridden to make the
names distinct, even within the same namespace. The declarations that override the
default type names are detailed in Section 8.3.2.

A further consideration is the placement of the buffer code. The scanner base class
and the generated scanner are specialized by the choice of type-arguments and input
grammar. By contrast the buffer code is invariant for allgplex-generated scanners6.
For applications with a single scanner it seems harmless to embed the buffer code in
the scanner namespace, and this is thegplexdefault. For applications with multiple
scanners it is possible to embed a separate copy of the buffer code within each scanner,
at the cost of some code duplication. However, it is probably better to use thenoEmbed-
Buffersoption and access a single copy of the buffer code from theQUT.GplexBuffers
namespace.

Scanners in Separate Assemblies

If each scanner is placed in a separate assembly then the issue of name-clashes may
be removed from consideration by limiting the visibility of the scanner’sAPI classes.
A possible structure would be to have the external footprint of each assembly limited
to a thin wrapper which initializes and invokes an otherwise inaccessible parser and
scanner. In this case the buffer code may be shared from within some other assembly.
If the buffer code is embedded, the scanner namespaces must be distinct, since the
buffer types are public.

Scanners in the Host Assembly

If all the scanners are placed in the same assembly, assumed to be the same assembly
as the host, then the visibility of the scanner classes should beinternal . As be-
fore, the scanner classes are dis-ambiguated either by declaring them within differing
namespaces, or by overriding the default naming of types.

If the buffer class definitions are embedded then the scannersmustreside in differ-
ent name spaces. Even so, some unnecessary code duplication will occur. This may be
eliminated by using the (non-default)noEmbedBuffersoption.

In summary: to place all scanners in the main application assembly, generate each
scanner with the (non-default)internal visibility option. Each scanner should be
generated with the (non-default)noEmbedBuffersoption.

An Example: Multiple Scanners in GPPG

There are two scanners in thegppgcode base. One is the main scanner which works on
behalf of agppg-generated parser. The other is a specialized “action scanner” which
is used to process and error-check text spans that contain semantic actions. The action
scanner has no associated parser.

Both of the scanners are placed in the same namespace,QUT.GPGen.Lexers. The
main scanner declares internal visibility but retains the default type-names for the scan-

6File buffering is specialized according to the file encoding, but this specialization happens atscanner
runtime, not at scanner generation time.

4 ADVANCED TOPICS 30

ner class and the scanner base class. The token enumeration is renamed “Token” in both
“gppg.y ” and “gppg.lex ”.

The action scanner renames the scanner class as “ActionScanner”, the scanner base
class as “ActionBase”, and the token enumeration as “ActionToken”.

Both scanner specifications use thenoEmbedBuffersoption, with the shared buffer
code placed in theGplexBuffers.cssource file.

4.3 Stacking Start Conditions

For some applications the use of the standard start condition mechanism is either im-
possible or inconvenient. The lex definition language itself forms such an example,
if you wish to recognize theC# tokens as well as the lex tokens. We must have start
conditions for the main sections, for the code inside the sections, and for comments
inside (and outside) the code.

One approach to handling the start conditions in such cases is to use astackof start
conditions, and to push and pop these in semantic actions.gplexsupports the stacking
of start conditions when the “stack ” command is given, either on the command line,
or as an option in the definitions section. This option provides the methods shown in
Figure 22. These are normally used together with the standardBEGIN method. The

Figure 22: Methods for Manipulating the Start Condition Stack

// Clear the start condition stack
internal void yy clear stack();

// Push currentScOrd, and set currentScOrd to “state”
internal void yy push state(int state);

// Pop start condition stack into currentScOrd
internal int yy pop state();

// Fetch top of stack without changing top of stack value
internal int yy top state();

first method clears the stack. This is useful for initialization, and also for error recovery
in the start condition automaton.

The next two methods push and pop the start condition values, while the final
method examines the top of stack without affecting the stack pointer. This last is useful
for conditional code in semantic actions, which may perform tests such as —

if (yy top state() == INITIAL) ...

Note carefully that the top-of-stack state is not the current start condition, but is the
value that willbecomethe start condition if “pop” is called.

4.4 Settingyylval and yylloc

Parsers constructed by tools likegppghave built-in mechanisms that allow the semantic
values and location values to be evaluated as the input text is parsed. The types of these
values are theTValueandTSpantypes that parameterize the genericShiftReduceParser

4 ADVANCED TOPICS 31

class. These same types are the type parameters of the genericAbstractScannerclass,
from which allgplexscanner classes are derived.

The built-in mechanisms of the parser facilitate the computation ofsynthesized
attributesof the (virtual) derivation tree that such parsers trace out during parsing.
That is to say, the values at each interior node of the tree are computed from the values
of that node’s immediate children. The starting points of all such calculations are the
values of the leaf nodes, which represent the tokens supplied by the scanner.

When the scanner’syylexmethod is called it recognizes a pattern, and returns an
integer value corresponding to one of the values of theTokensenumeration. For those
applications that need more information than the bare integer the additional information
must be passed in the two scanner “variables”yylval of typeTValueandyylloc of type
TSpan.

4.4.1 TheTValueType Parameter

Not all parsers need to define a semantic value type. And even for those applications
that do need semantic values from the scanner, not all tokens have meaningful attribute
information.

Consider theRealCalcexample distributed with thegppg tool. This is a gram-
mar which recognizes infix arithmetic arithmetic. The tokens aredigit, letter, left and
right parentheses and the four operators. The operators and the parentheses have no
attributes, and do not setyylval. Only the lexical categoriesdigit and letter have se-
mantic values ofint andchar type respectively. The parser wants to use the semantic
value type to compute the expression value in, so the final semantic value type for this
example is a “union” with an integer, character, and floating point double variant.

As described in section 4.1, if an application uses location information it should be
produced forall tokens. Theyylloc-setting code is thus naturally placed in the epilog
of the scanner’sScanmethod. However, since only a sub-set of tokens have seman-
tic information associated with them theyylval-setting code is placed in the semantic
actions of those patterns of the lexical specification that need it.

4.4.2 TheTSpanType Parameter

The TSpantype parameter is used to hold location information, and must implement
theIMergeinterface of Figure 23. In the absence of an explicit declaration of a location

Figure 23: Location types must implementIMerge

public interface IMerge <YYLTYPE> {
YYLTYPE Merge(YYLTYPE last);

}

type, the default typeLexLocationis used.
If an application needs a more elaborate location type than the default, then the

name of the new type is declared in the parser specification. For example, the parsers
in bothgplexandgppgrely on a different location type,LexSpan, which includes buffer
position values as well as line and column information. TheLexSpantype has a method
which is able to extract all of the input text of a span as a string value. It makes no sense

4 ADVANCED TOPICS 32

to do this with ayylloc value (it would just be a roundabout way of gettingyytext), but
the merged location value of a production right-hand-side will extractall of the text of
that pattern.

4.5 Backtracking Information

When the “/summary ” option is sent togplexthe program produces a listing file with
information about the produced automaton. This includes the number of start condi-
tions, the number of patterns applying to each condition, the number ofNFSAstates,
DFSAstates, accept states and states that require backup.

Because an automaton that requires backup runs somewhat more slowly, some
users may wish to modify the specification to avoid backup. A backup state is a state
that is an accept state that contains at least oneout-transition that leads to a non-accept
state. The point is that if the automaton leaves a perfectly good accept state in the
hope of finding an even longer match it may fail. When this happens, the automaton
must return to the last accept state that it encountered, pushing back the input that was
fruitlessly read.

It is sometimes difficult to determine from where in the grammar the backup case
arises. When invoked with the “/summary ” option gplexhelps by giving an example
of a shortest possible string leading to the backup state, and gives an example of the
character that leads to a transition to a non-accept state. In many cases there may be
many strings of the same length leading to the backup state. In such casesgplextries
to find a string that can be represented without the use of character escapes.

Consider the grammar —

foo |
foobar |
bar { Console .WriteLine(" keyword " + yytext); }

If this is processed with the summary option the listing file notes that the automaton
has one backup state, and contains the diagnostic —

After <INITIAL>"foo" automaton could accept “foo ” in state 1
— after ‘b’ automaton is in a non-accept state and might need to backup

This case is straightforward, since after reading “foo” and seeing a ‘b’ as the next
character the possibility arises that the next characters might not be “ar”7.

In other circumstances the diagnostic is more necessary. Consider a definition of
words that allows hyphens and apostrophes, but not at the ends of the word, and not
adjacent to each other. Here is one possible grammar —

alpha [a-zA-Z]
middle ([a-zA-Z][\-’]|[a-zA-Z])
%%
{middle}+{alpha} { ...

For this automaton there is just one backup state. The diagnostic is —

After <INITIAL>"AA" automaton could accept “{middle }+{alpha }” in state 1
— after ‘’ ’ automaton is in a non-accept state and might need to backup

The shortest path to the accept state requires two alphabetic characters, with “AA” a
simple example. When an apostrophe (or a hyphen) is the next character, there is al-
ways the possibility that the word will end before another alphabetic character restores
the automaton to the accept state.

7But note that the backup is removed by adding an extra production with pattern “{ident }* ” to ensure
that all intermediate states acceptsomething.

4 ADVANCED TOPICS 33

4.6 Choosing Compression Options

Depending on the options,gplexscanners have either one or two lookup tables. The
program attempts to choose sensible compression defaults, but in cases where a user
wishes to directly control the behavior the compression of the tables may be controlled
independently.

In order to use this flexibility, it is necessary to understand a little of how the internal
tables ofgplex are organized. Those readers who are uninterested in the technical
details can safely skip this section and confidently rely on the program defaults.

Scanners Without Equivalence Classes

If a scanner does not use either the /classesor the /unicodeoptions, the scanner has
only a next-state table. There is a one-dimensional array, one element for each state,
which specifies for each input character what the next state shall be. In the simple,
uncompressed case each next-state element is simply an array of length equal to the
cardinality of the alphabet. States with the same next-state table share entries, so the
total number of next state entries is(|N | −R)× |S| where|N | is the number of states,
R is the number of states that reference another state’s next-state array, and|S| is the
number of symbols in the alphabet. In the case of theComponent Pascal LEXgrammar
there are 62 states and the 8-bit alphabet has 256 characters. Without row-sharing there
would be 15872 next-state entries, however 34 rows are repeats so the actual space used
is 7168 entries.

It turns out that these next-state arrays are very sparse, in the sense that there are
long runs of repeated elements. The default compression is to treat the|S| entries as
being arranged in a circular buffer and to exclude the longest run of repeated elements.
The entry in the array for each state then has a data structure which specifies: the lowest
character value for which the table is consulted, the number ofnon-default entries in the
table, the default next-state value, and finally thenon-default array itself. The length of
thenon-default array is different for different states, but on average is quite short. For
theComponent Pascalgrammar the total number of entries in all the tables is just 922.

Note that compression of the next-state table comes at a small price at runtime.
Each next-state lookup must inspect the next-state data for the current state, check the
bounds of the array, then either index into the shortened array or return the default
value.

Non-Unicode Scanners With Equivalence Classes

If a scanner uses character equivalence classes, then conceptually there are two tables.
The first, theCharacter Map, is indexed on character value and returns the number
of the equivalence class to which that character belongs. This table thus has as many
entries as there are symbols in the alphabet,|S|. Figure 24 shows the conceptual form
of a scanner with character equivalence classes. This figure should be compared with
Figure 10.

The “alphabet” on which the next-state tables operate has only as many entries as
there are equivalence classes,|E|. Because the number of classes is always very much
smaller than the size of the alphabet, using classes provides a useful compression on
its own. The runtime cost of this compression is the time taken to perform the mapping
from character to class. In the case of uncompressed maps, the mapping cost is a single
array lookup.

4 ADVANCED TOPICS 34

Figure 24: Conceptual diagram of scanner with character equivalence classes

Character
Decoding

Nextstate
Function

Current State

Encoded
byte stream

Next
State

Codepoint

Equiv.
Class

Character
Class Map

In the case of theComponent Pascalscanner there are only 38 character equivalence
classes, so that the size of the uncompressed next-state tables,(|N | −R)× |E|, is just
(62 − 34) states by 38 entries, or 1064 entries. Clearly, in this case the total table size
is not much larger than the case with compression but no mapping. For typical 8-bit
scanners theno-compression but character classversion is similar in size and slightly
faster in execution than the default settings.

Note that although the class map often has a high degree of redundancy it is seldom
worth compressing the map in the non-unicode case. The map takes up only 256 bytes,
so the default for non-unicode scanners with character equivalence classes is tonot
compress the map.

Tables in Unicode Scanners

For scanners that use the unicode character set, the considerations are somewhat differ-
ent. Certainly, the option of using uncompressed next-state tables indexed on character
value seems unattractive, since in the unicode case the alphabet cardinality is 1114112
if all planes are considered. For theComponent Pascalgrammar this would lead to un-
compressed tables of almost seventy mega-bytes. In grammars which contain unicode
character literals spread throughout the character space the simple compression of the
next-state tables is ineffective, so unicode scannersalwaysuse character equivalence
classes.

With unicode scanners the use of character equivalence classes provides good com-
paction of the next-state tables, since the number of classes in unicode scanners is gen-
erally as small as is the case for non-unicode scanners. However the class map itself, if
uncompressed, takes up more than a megabyte on its own. This often would dominate
the memory footprint of the scanner, so the default for unicode scanners is to compress
the character map.

Whengplexcompresses the character map of a unicode scanner it considers two
strategies, and sometimes uses a combination of both. The first strategy is to use an
algorithm somewhat related to the Fraser and Hansen algorithm for compressing sparse
switch statement dispatch tables. The second is to use a “two-level” table lookup.

Compression of a sparse character map involves dividing the map into dense re-
gions which contain different values, which are separated by long runs of repeated
values. The dense regions are kept as short arrays in the tables. TheMap() function
implements a binary decision tree of depthdlog2 Re, whereR is the number of regions

4 ADVANCED TOPICS 35

in the map. After at most a number of decisions equal to the tree-depth, if the character
value has fallen in a dense region the return value is found by indexing into the appro-
priate short array, while if a long repeated region has been selected the repeated value
is returned.

A two-level table lookup divides the map function index into high and low bits. For
a 64k map it is usual to use the most significant eight bits to select a sub-map of 256
entries, and use the least significant eight bits to index into the selected sub-map. In a
typical case not all the sub-maps are different, so that ifN is the number of bytes in
the pointer type, andU is the number of unique sub-maps the total space required is
(256×N) bytes for the upper level map and(256× U) bytes of sub-maps. Two level
maps are fast, since they take only two array lookups to find a value, but for the sparse
case may take more space than the alternative method.

When generating a unicode scannergplex always computes a decision tree data
structure. The program tries to limit the decision-tree depth in order to safeguard per-
formance. In the case that the decision tree is too deep the program switches to two-
level lookup table for theBasic Multilingual Plane(that is for the first 64k characters)
and recursively considers a decision tree for the region beyond the 64k boundary. This
is a good strategy since 14 of the remaining 16 planes are unallocated and the other two
are almost always infrequently accessed.

For the common case where aLEX specification has no literals beyond theASCII
boundary the character space collapses into just two regions: a dense region covering
the 7 or 8-bit range, and a repeated region that repeats all the way out to the 21-bit
boundary. In this case the “decision tree” collapses into the obvious bounds-check —

sbyte MapC(int chr) {
if (chr < 127) return mapC0[chr];
else return (sbyte) 29;

}

wheremapC0is the map for the dense region from ‘\0 ’ to ‘ ˜ ’, and equivalence class
29 encodes the “no transition” class.

It is possible to forcegplex to use the decision-tree algorithm over the whole al-
phabet by using the/squeezeoption. This almost always leads to the smallest scanner
tables, but sometimes leads to very deep decision trees and poor performance.

Statistics

If the summaryoption is used, statistics related to the table compression are emitted to
the listing file. This section has data for two different scanners. One is a relatively sim-
ple specification for aComponent Pascal, and contains no unicode literal characters.
The other is an extremely complicated specification for aC# scanner. This specifi-
cation uses character equivalence classes that range through the whole of the unicode
alphabet.

Figure 25 contains the statistics for the lexical grammar for theComponent Pascal
Visual Studiolanguage service, with various options enabled. This grammar is for a
Babelscanner, and will normally get input from a string buffer. Note particularly that
since theLEX file has no unicode character literals a unicode scanner will take up no
more space nor run any slower than a non-unicode scanner using character equivalence
classes. In return, the scanner will not throw an exception if it is passed a string contain-
ing a unicode character beyond the Latin-8 boundary. The default compression case is
indicated in the table. Thus if no option is given the default is/compress. With option

4 ADVANCED TOPICS 36

Figure 25: Statistics forComponent Pascalscanners

Options nextstate
entries

char-
classes

map-
entries

tree-
depth

compress# 902 – – –
nocompress 7168 – – –

classes, nocompressmap, nocompressnext 1064 38 256 –
classes, nocompressmap, compressnext# 249 38 256 –
classes, compressmap, compressnext 249 38 127 1
classes, compressmap, nocompressnext 1064 38 127 1

unicode, nocompressmap, nocompressnext 1064 38 1.1e6 –
unicode, nocompressmap, compressnext 249 38 1.1e6 –
unicode, compressmap, compressnext# 249 38 127 1
unicode, compressmap, nocompressnext 1064 38 127 1

Default compression option

/classesthe default is/nocompressmap /compressnext. Finally, with option/unicode
the default is/compressmap /compressnext.

For the unicode scanners that compress the map the compression used is: a table
for the single dense region covering the first 127 entries, a defaultdon’t carevalue for
the rest of the alphabet, and a decision tree that has degenerated into a simple bounds
check.

An example more typical of unicode scanners is the scanner forC#. This scanner
implements theECMA-334standard, which among other things allows identifiers to
contain characters that are located throughout the whole unicode alphabet. In this

Figure 26: Statistics forC#scanner

Options nextstate
entries

char-
classes

map-
entries

tree-
depth

unicode 1360 55 13568 5
unicode, squeeze 1360 55 9744 7

unicode, nocompressmap, nocompressnext 4675 55 1.1e6 –
unicode, nocompressmap, compressnext 1360 55 1.1e6 –
unicode, compressmap, compressnext# 1360 55 13568 5
unicode, compressmap, nocompressnext 4675 55 13568 5

Default compression option

case, the default compression if only the/unicodeoption is given is/compressmap
/compressnext. The compressed map in this case consists of: a two level lookup table
for the basic multilingual plane with a 256-entry upper map pointing to 47 unique sub-
maps. The rest of the map is implemented by a decision-tree of depth 5, with a total of
only 1280 entries in the dense arrays.

The use of the/squeezeoption generates a scanner with a map that is compressed

5 ERRORS AND WARNINGS 37

by a single decision-tree. The tree has depth 7, and the dense arrays contain a total of
9744 elements. Given that the decision tree itself uses up memory space, it is not clear
that in this case the overall compression is significantly better than the default.

When to use Non-Default Settings

If a non-unicode scanner is particularly time critical, it may be worth considering using
character equivalence classes and not compressing either tables. This is usually slightly
faster than the default settings, with very comparable space requirements. In even
more critical cases it may be worth considering simply leaving the next-state table
uncompressed. Without character equivalence classes this will cause some increase in
the memory footprint, but leads to the fastest scanners.

For unicode scanners, there is no option but to use character equivalence classes,
in the current release. In this case, a moderate speedup is obtained by leaving the next-
states uncompressed. Compressing the next-state table has roughly the same overhead
as one or two extra levels in the decision tree.

The depth of the decision tree in the compressed maps depends on the spread of
unicode character literals in the specification. Some pathological specifications are
known to have caused the tree to reach a depth of seven or eight.

Using thesummaryoption and inspecting the listing file is the best way to see
if there is a problem, although it may also be seen by inspecting the source of the
produced scannerC#file.

5 Errors and Warnings

There are a number of errors and warnings thatgplexdetects. Errors are fatal, and no
scanner source file is produced in that case. Warnings are intended to be informative,
and draw attention to suspicious constructs that may need manual checking by the user.

5.1 Errors

Errors are displayed in the listing file, with the location of the error highlighted. In
some cases the error message includes a variable text indicating the erroneous token or
the text that was expected. In the following the variable text is denoted<...>.

“ %%” marker must start at beginning of line —
An out-of-place marker was found, possibly during error recovery from an earlier
error.

Cannot set/unicode option inconsistently<...> —
Normally options are processed in order and may undo other option’s effect.
However, options that explicitly set the alphabet size such as/unicodeor /nouni-
codecannot be contradicted by later options.

Class<...> not found in assembly —
The class specified for a user-defined character class predicate could not be found
in the nominated assembly.

Context must have fixed right length or fixed left length —
gplexhas a limitation on the implementation of patterns with right context. Either
the right context or the body of the pattern must recognize fixed length strings.

5 ERRORS AND WARNINGS 38

Context operator cannot be used with a right anchor “$” —
The regular expression (possibly after expanding named categories) has both a
context operator and a right anchor symbol.

Empty semantic action, must be at least a comment—
No semantic action was found. This error also occurs due to incorrect syntax in
thepreceedingrule.

Expected character<...> —
During the scanning of a regular expression an expected character was not found.
This most commonly arises from missing right hand bracketing symbols, or clos-
ing quote characters.

Expected space here—
Thegplexparser was expecting whitespace. This can arise when a lexical cate-
gory definition is empty or when the pattern of a rule is followed by an end-of-
line rather than a semantic action.

Expected end-of-line here—
Unexpected non-whitespace characters have been found at the end of a construct
when an end of line is the only legal continuation.

Extra characters at end of regular expression—
The regular expression is incorrectly terminated.

Illegal escape sequence<...> —
An illegal escape sequence was embedded in a literal string.

Illegal name for start condition <...> —
Names of start conditions must be identifiers. As a special case the number zero
may be used as a shortcut for a used occurrence of the initial start state. Any
other numeric reference is illegal.

Illegal octal character escape<...> —
Denotation of character values by escaped octal sequences must contain exactly
three octal digits, except for the special case of ‘\0 ’.

Illegal hexadecimal character escape<...> —
Denotation of character values by escaped hexadecimal sequences must contain
exactly two hexadecimal digits.

Illegal unicode character escape<...> —
Denotation of character values by unicode escapes must have exactly four hex-
adecimal digits, following a ‘\u ’ prefix, or exactly eight hexadecimal digits,
following a ‘\U ’ prefix.

Illegal character in this context —
The indicated character is not the start of any possiblegplextoken in the current
scanner state.

Inconsistent “%option ” command <...> —
The message argument is an option that is inconsistent with already processed
options. In particular, it is not possible to declare/noClassesfor a unicode scan-
ner.

5 ERRORS AND WARNINGS 39

Invalid action —
There is a syntax error in the multi-line semantic action for this pattern.

Invalid or empty namelist —
There is a syntax error in the namelist currently being parsed.

Invalid production rule —
There is a syntax error in the rule currently being parsed.

Invalid character range: lower bound > upper bound —
In a character range within a character class definition the character on the left
of the ‘–’ must have a numerically smaller code point than the character on the
right.

Invalid single-line action —
gplexfound a syntax error in the parsing of a single-line semantic action.

Invalid class character: ‘–’ must be escaped—
A ‘–’ character at the start or end of a character set definition is taken as a lit-
eral, single character. Everywhere else in a set definition this character must be
escaped unless it is part of a range declaration.

Lexical category<...> already defined —
The lexical category in this definition is already defined in the symbol table.

Lexical category must be a character class<...> —
In this version ofgplexcharacter set membership predicates can only be gener-
ated for lexical categories that are character classes “[...]”.

Method <...> not found in class —
The method specified for a user-defined character class predicate could not be
found in the nominated class, or the method does not have the correct signature.

Missing matching construct<...> —
The parser has failed to find a matching right hand bracketing character. This
may mean that brackets (either ‘(’, ‘[’ or ‘{’) are improperly nested.

“namespace” is illegal, use “%namespace” instead —
C# code in the lex specification is insertedinside the generated scanner class.
The namespace of the scanner can only be set using the non-standard%name-
space command.

“next” action ‘ | ’ cannot be used on last pattern—
The ‘| ’ character used as a semantic action has the meaning “use the same action
as the following pattern”. This action cannot be applied to the last pattern in a
rules section.

No namespace has been defined—
The end of the definitions section of the specification was reached without find-
ing a valid namespace declaration.

Non unicode scanner cannot use /codePage:guess—
For byte-mode scanners the code page setting is used at scanner generation time
to determine the meaning of character predicates. The code page guesser works
at scanner runtime.

5 ERRORS AND WARNINGS 40

Only “public” and “internal” allowed here —
The “%visibility ” marker can only declare the scanner class to be public or
internal.

Parser error <...> —
Thegplexparser has encountered a syntax error in the inputLEX file. The nature
of the error needs to be found from the information in the<...> placeholder.

Start state<...> already defined —
All start state names must be unique. The indicated name is already defined.

Start state<...> undefined —
An apparent use of a start state name does not refer to any defined start state
name.

Symbols ‘̂ ’ and ‘ $’ can only occur at ends of patterns —
The two anchor symbols can only occur at the end of regular expressions. This
error can arise when an anchor symbol is part of a lexical category which is then
used as a term in another expression. Using anchor symbols in lexical categories
should be deprecated.

This assembly could not be found—
The assembly specified for a user-defined character class predicate could not be
found. ThePE-file must be in the current working directory.

This assembly could not be loaded—
The assembly specified for a user-defined character class predicate could not be
loaded. The assembly must be a valid.NET managed codePE-file, andgplex
must have sufficient privilege to load the assembly.

This token unexpected—
The parser is expecting to find indented text, which can only be part of aC#
code-snippet. The current text does not appear to be legalC#.

Type declarations impossible in this context—
gplexallows type declarations (class, struct, enum) in the definitions sec-
tion of the specification, and in the user code section. Type declarations are not
permitted in the rules section.

“using” is illegal, use “%using ” instead —
C# code in the lex specification is insertedinside the generated scanner class.
The using list of the scanner module can only have additional namespaces added
by using the non-standard%using command.

Unknown lexical category<...> —
This name is not the name of any defined lexical category. This could be a
character case error: lexical category names are case-sensitive.

Unexpected symbol, skipping to<...> —
gplexhas found a syntax error in the current section. It will discard input until it
reaches the stated symbol.

Unrecognized “%option ” command <...> —
The given option is unknown.

5 ERRORS AND WARNINGS 41

Unknown character predicate<...> —
The character predicate name in the[: ... :] construct is not known togplex.

Unicode literal too large<...> —
The unicode escape denotes a character with a code point that exceeds the limit
of the unicode definition,0x10ffff .

Unterminated block comment start here —
A end of this block comment/* ... */ was not found before the end of file was
reached. The position of thestart of the unterminated comment is marked.

Unknown lex tag name —
Tags ingplexare all those commands that start with a%.... The current tag is not
known. Remember that tag names are case-sensitive.

Version of gplexx.frame is not recent enough—
The version of gplexx.frame thatgplexfound does not match thegplexversion.

5.2 Warnings

A number of characteristics of the input specification may be dangerous, or require
some additional checking by the user. In such casesgplexissues one of the following
warnings. In some cases the detected constructs are intended, and are safe.

/babel option is unsafe without/unicode option —
Scanners generated with thebabel option read their input from strings. It is
unsafe to generate such a scanner without declaring/unicodesince the input
string might contain a character beyond the Latin-8 boundary, which will cause
the scanner to throw an exception.

Code between rules, ignored—
Codebetweenrules in the rules section of a specification cannot be assigned to
any meaningful location in the generated scanner class. It has been ignored.

No upper bound to range,<...> included as set class members—
It is legal for the last character in a character set definition to be the ‘–’ character.
However, check that this was not intended to be part of a range definition.

Special case:<...> included as set class member—
It is legal for the first character in a character set definition to be the ‘–’ character.
However, check that this was not intended to be part of a range definition.

This pattern is never matched —
gplexhas detected that this pattern cannot ever be matched. This might be an
error, caused by incorrect ordering of rules. (See the next two messages for
diagnostic help).

This pattern always overridden by<...> —
In the case that a pattern is unreachable, this warning is attached to the unreach-
able pattern. The variable text of the message indicates (one of) the patterns that
will be matched instead. If this is not the intended behavior, move the unreach-
able pattern earlier in the rule list.

6 EXAMPLES 42

This pattern always overrides pattern<...> —
This warning message is attached to the pattern that makes some other pattern
unreachable. The variable text of the message indicates the pattern that is ob-
scured.

This pattern matches the empty string, and might loop—
One of the input texts that this pattern matches is the empty string. This may be
an error, and might cause the scanner to fail to terminate. The following section
describes the circumstances under which such a construct isNOT an error.

Matching the Empty String

There are a number of circumstances under which a pattern can match the empty string.
For example, the regular expression may consist of a* -closure or may consist of a
concatenation of symbols each of which is optional. It is also possible for a pattern
with fixed-length right context to have a pattern body (variable-length left context)
which matches the empty string. All such patterns are detected bygplex.

Another way in which a pattern recognition might consume no input is for the
semantic action of a pattern to contain the commandyyless(0) . If this is the case
the semantic action will reset the input position back to thestart of the recognised
pattern.

In all cases where the pattern recognition does not consume any input, if the start
state of the scanner is not changed by the semantic action the scanner will become
stuck in a loop and never terminate.

Nevertheless, it is common and useful to include patterns that consume no input.
Consider the case where some characteristic pattern indicates a “phase change” in the
input. SupposeX denotes that pattern,S1 is the previous start condition and the new
phase is handled by start conditionS2. The following specification-pattern is a sensible
way to implement this semantic —

<S1>X { BEGIN(S2); yyless(0); }
<S2>...

Using this specification-pattern allows the regular expression patterns that belong to
the S2 start state to include patterns that begin by matching theX that logically be-
gins the new input phase. The lexical specification forgplex uses this construct no
less than three times. For scanners that use the/stackoption, callingyy pop stateor
yy pushstatealso constitute a change of start state for purposes of avoiding looping.

6 Examples

This section describes the stand-alone application examples that are part of thegplex
distribution. In practice the user code sections of such applications might need a bit
more user interface handling.

The text for all these examples is in the “Examples ” subdirectory of the distribu-
tion.

6.1 Word Counting

This application scans the list of files on the argument list, counting words, lines, in-
tegers and floating point variables. The numbers for each file are emitted, followed by
the totals if there was more than one file.

6 EXAMPLES 43

The next section describes the input, line by line.
The fileWordCount.lexbegins as follows.

%namespace LexScanner
%option noparser, verbose
%{

static int lineTot = 0;
static int wordTot = 0;
static int intTot = 0;
static int fltTot = 0;

%}

the definitions section begins with the namespace definition, as it must. We do not need
any “using ” declarations, sinceSystemandSystem.IOare needed by the invariant code
of the scanner and are imported by default. Next, four class fields are defined. These
will be the counters for the totals over all files. Since we will create a new scanner
object for each new input file, we make these counter variablesstatic .

Next we define three character classes —
alpha [a-zA-Z]
alphaplus [a-zA-Z\-’]
digits [0-9]+
%%

Alphaplusis the alphabetic characters plus hyphens (note the escape) and the apos-
trophe. Digits is one or more numeric characters. The final line ends the definitions
section and begins the rules.

First in the rules section, we define some local variables for theScanroutine. Recall
that codebeforethe first rule becomes part of the prolog.

int lineNum = 0;
int wordNum = 0;
int intNum = 0;
int fltNum = 0;

These locals will accumulate the numbers within a single file. Now come the rules —

\n|\r\n? lineNum++; lineTot++;
{alpha}{alphaplus}*{alpha} wordNum++; wordTot++;
{digits} intNum++; intTot++;
{digits}\.{digits} fltNum++; fltTot++;

The first rule recognizes all common forms of line endings. The second defines a
word as an alpha followed by more alphabetics or hyphens or apostrophes. The third
and fourth recognize simple forms of integer and floating point expressions. Note
especially that the second rule allows words to contain hyphens and apostrophes, but
only in theinterior of the word. The word must start and finish with a plain alphabetic
character.

The fifth and final rule is a special one, using the special marker denoting the end
of file. This allows a semantic action to be attached to the recognition of the file end.
In this case the action is to write out the per-file numbers.

<<EOF>> {
Console .Write(" Lines: " + lineNum);
Console .Write(" , Words: " + wordNum);
Console .Write(" , Ints: " + intNum);
Console .WriteLine(" , Floats: " + fltNum);

}
%%

6 EXAMPLES 44

Note that we could also have placed these actions as code in the epilog, to catch termi-
nation of the scanning loop. These two are equivalent in this particular case, but only
since no action performs a return. We could also have placed the per-file counters as
instance variables of the scanner object, since we construct a fresh scanner per input
file.

The final line of the last snippet marks the end of the rules and beginning of the
user code section.

The user code section is shown if Figure 27. The code opens the input files one by
one, creates a scanner instance and callsyylex.

Figure 27: User Code for Wordcount Example

public static void Main(string [] argp) {
for (int i = 0; i < argp.Length; i++) {

string name = argp[i];
try {

int tok;
FileStream file = new FileStream (name, FileMode .Open);
Scanner scnr = new Scanner (file);
Console .WriteLine("File: " + name);
do {

tok = scnr.yylex();
} while (tok > (int) Tokens .EOF);

} catch (IOException) {
Console .WriteLine("File " + name + " not found");

}
}
if (argp.Length > 1) {

Console .Write("Total Lines: " + lineTot);
Console .Write(", Words: " + wordTot);
Console .Write(", Ints: " + intTot);
Console .WriteLine(", Floats: " + fltTot);

}
}

Building the Application

The fileWordCount.csis created by invoking —
D:\gplex\test> gplex /summary WordCount.lex

This also createsWordCount.lstwith summary information.
This particular example, generates 26NFSAstates which reduce to just 12DFSA

states. Nine of these states areacceptstates8 and there are two backup states. Both
backup states occur on a “.” input character. In essence when the lookahead character
is dot,gplexrequires an extra character of lookahead to before it knows if this is a full-
stop or a decimal point. Becausegplexperforms state minimization by default, two
backup states are merged and the final automaton has just nine states.

8These are always the lowest numbered states, so as to keep the dispatch table for the semantic action
switch statement as dense as possible.

6 EXAMPLES 45

Since this is a stand-alone application, the parser type definitions are taken from
thegplexx.framefile, as described in Figure 19. In non stand-alone applications these
definitions would be accessed by “%using ” the parser namespace in the lex file. By
defaultgplexembeds the buffer code in theWordCount.csoutput file. Thus we only
need to compile a single file —

D:\gplex\test> csc WordCount.cs

producingWordCount.exe. Run the executable over its own source files —

D:\gplex\test> WordCount WordCount.cs WordCount.lex
File: WordCount.cs
Lines: 590, Words: 1464, Ints: 404, Floats: 3
File: WordCount.lex
Lines: 64, Words: 151, Ints: 13, Floats: 0
Total Lines: 654, Words: 1615, Ints: 417, Floats: 3
D:\gplex\test>

The text in plain typewriter font is console output, the slanting, bold font is user input.
Where do the three “floats” come from? Good question! The text ofWordCount.cs

quotes some version number strings in a header comment. The scanner thinks that
these look like floats. As well, one of the table entries of the automaton has a comment
that the shortest string reaching the corresponding state is “0.0 ”.

6.2 ASCII Strings in Binary Files

A very minor variation of the word-count grammar produces a version of theUNIX
“strings” utility, which searches for ascii strings in binary files. This example uses
the same user code section as the word-count example, Figure 27, with the following
definitions and rules section —

alpha [a-zA-Z]
alphaplus [a-zA-Z\-’]
%%
{alpha}{alphaplus}*{alpha} Console .WriteLine(yytext);
%%

This example is in file “strings.lex ”.

6.3 Keyword Matching

The third example demonstrates scanning ofstrings instead of files, and the way that
gplexchooses the lowest numbered pattern when there is more than one match. Here
is the start of the file “foobar.lex ”.

%namespace LexScanner
%option noparser nofiles
alpha [a-zA-Z]
%%
foo |
bar Console .WriteLine(" keyword " + yytext);
{alpha}{3} Console .WriteLine(" TLA " + yytext);
{alpha}+ Console .WriteLine(" ident " + yytext);
%%

The point is that the input text “foo” actually matches three of the four patterns. It
matches the “TLA” pattern and the general ident pattern as well as the exact match.

6 EXAMPLES 46

Figure 28: User Code for keyword matching example

public static void Main(string [] argp) {
Scanner scnr = new Scanner ();
for (int i = 0; i < argp.Length; i++) {

Console .WriteLine("Scanning \"" + argp[i] + "\"");
scnr.SetSource(argp[i], 0);
scnr.yylex();

}
}

Altering the order of these rules will exercise the “unreachable pattern” warning mes-
sages. Try this!

Figure 28 is the string-scanning version of the user code section. This example
takes the input arguments and passes them to theSetSourcemethod. Try the program
out on input strings such as “foo bar foobar blah ” to make sure that it behaves as
expected.

After playing with this example, try generating a scanner with thecaseInsensitive
option. The scanner will recognize all of ”foo”, ”FOO”, ”fOo” and so on as keywords,
but will display the actual text of the input in the output. Notice that in this case the
character class ”alpha” could just as well have been defined as “[a-z] ”.

One of the purposes of this example is to demonstrate one of the two usual ways
of dealing with reserved words in languages. One may specify each of the reserved
words as a pattern, with a catch-all identifier pattern at the end. For languages with
large numbers of keywords this leads to automata with very large state numbers, and
correspondingly large next-state tables.

When there are a large number of keywords it is sensible to define a single identifier
pattern, and have the semantic action delegate to a method call —

return GetIdToken(yytext);

TheGetIdTokenmethod should check if the string of the text matches a keyword, and
return the appropriate token. If there really are many keywords the method should per-
form a switch on the first character of the string to avoid sequential search. Finally,
for scanners generated with the/caseInsensitiveswitch remember that theyytextvalue
will retain the case of the original input. For such applications theGetIdTokenmethod
should do aString.ToUppercall to canonicalize the case before testing for string equal-
ity.

6.4 The Code Page Guesser

The “code page guesser” is invoked by unicode scanners generated with thecodePage:-
guessoption if an input file is opened which has noUTF prefix. The guesser scans the
input file byte-by-byte, trying to choose between treating the file as a utf-8 file, or
presuming it to be an 8-bit byte-file encoded using the default code page of the host
machine.

The example file “GuesserTest.lex ” is a wrapped example of the code page
guesser. It scans the files specified in the command line, and reports the number of
significant patterns of each kind that it finds in each file.

6 EXAMPLES 47

The basic idea is to look for sequences of bytes that correspond to well-formed
utf-8 character encodings that require two or more bytes. The code also looks for bytes
in the upper-128 byte-values that are not part of any valid utf-8 character encoding. We
want to create an automaton to accumulate counts of each of these events. Furthermore,
we want the code to run as quickly as possible, since the real scanner cannot start until
the guesser delivers its verdict.

The following character sets are defined —
Utf8pfx2 [\xc0-\xdf] // Bytes with pattern 110x xxxx
Utf8pfx3 [\xe0-\xef] // Bytes with pattern 1110 xxxx
Utf8pfx4 [\xf0-\xf7] // Bytes with pattern 1111 0xxx
Utf8cont [\x80-\xbf] // Bytes with pattern 10xx xxxx
Upper128 [\x80-\xrf] // Bytes with pattern 1xxx xxxx

These sets are: all those values that are the first byte of a two, three or four-byte utf-8
character encoding respectively; all those values that are valid continuation bytes for
multi-byte utf-8 characters; and all bytes that are in the upper-128 region of the 8-bit
range.

Counts are accumulated for occurrences of two-byte, three-byte and four-byte utf-8
character patterns in the file, and bytes in the upper 128 byte-value positions that are
not part of any legal utf-8 character. The patterns are —

{Utf8pfx2}{Utf8cont} utf2++; // Increment 2-byte utf counter
{Utf8pfx3}{Utf8cont}{2} utf3++; // Increment 3-byte utf counter
{Utf8pfx4}{Utf8cont}{3} utf4++; // Increment 4-byte utf counter
{Upper128} uppr++; // Increment upper non-utf count

It should be clear from the character set definitions that this pattern matcher is defined
in a natural way in terms of symbol equivalence classes. This suggests usinggplex
with theclassesoption. The resulting automaton has six equivalence classes, and just
twelve states. Unfortunately, it also has two backup states. The first of these occurs
when aUtf8pfx3byte has been read, and the next byte is a member of theUtf8cont
class. The issue is that the first byte is a perfectly good match for theuppr pattern, so
if the bytetwo aheadis not a secondUtf8contthen we will need to back up and accept
theupprpattern. The second backup state is the cognate situation for the four-byteutf4
pattern.

Having backup states makes the automaton run slower, and speed here is at a pre-
mium. Some reflection shows that the backup states may be eliminated by defining
three extra patterns —

{Utf8pfx3}{Utf8cont} uppr += 2; // Increment uppr by two
{Utf8pfx4}{Utf8cont} uppr += 2; // Increment uppr by two
{Utf8pfx4}{Utf8cont}{2} uppr += 3; // Increment uppr by three

With these additional patterns, when the first two bytes of theutf3 or utf4 patterns
match, but the third byte does not, rather than back up, we addtwo to theuppr count.
Similarly, if the first three bytes of theutf4 pattern match but the fourth byte does not
match we addthreeto theuppr count.

The new automaton has the same number of equivalence classes, and the same
number of states, but has no backup states. This automaton can run very fast indeed.

6.5 Include File Example

The example programIncludeTestis a simple harness for exercising the include file
facilities ofgplex. The complete source of the example is the file “IncludeTest.lex ”
in the distribution.

7 NOTES 48

The program is really a variant of the “strings” program of a previous example,
but has special semantic actions when it reads the string “#include ” at the start of an
input line. As expected, the file declares aBufferContextstack.

Stack <BufferContext > bStack = new Stack <BufferContext >();

Compared to the strings example there are some additional declarations.
%x INCL // Start state while parsing include command
dotchr [ˆ\r\n] // EOL-agnostic version of traditional LEX ‘.’
eol (\r\n?|\n) // Any old end of line pattern

... // And so on ...

The rules section recognizes strings of length two or more, the include pattern, and
also processes the filenames of included files.

{alpha}{alphaplus}*{alpha} { Console .WriteLine(
" {0}{1} {2}: {3}", Indent(), yytext, yyline, yycol); }

ˆ"#include" BEGIN(INCL);
<INCL>{eol} BEGIN(0); TryInclude(null);
<INCL>[\t] /* skip whitespace */
<INCL>[ˆ \t]{dotchr}* BEGIN(0); TryInclude(yytext);

TheIndentmethod returns a blank string of length depending on the depth of the buffer
context stack. This “pretty prints” the output of this test program.

The user code in Figure 29 suppliesMain, TryIncludeandyywrapfor the example.
In this example the command line arguments are passed into aLineBuff buffer. Since
the buffers that result from file inclusion will be ofBuildBuff type, this demonstrates
the ability to mix buffers of different types using file inclusion.

Most of the error checking has been left out of the figure, but the example in the
distribution has all the missing detail.

7 Notes

7.1 Moving From v1.0 to v1.1.0

Version 1.1.0 ofgplexis a relatively major change to the tool, and involves a number of
changes that are potentially breaking for some existing applications. Breaking changes
are a matter of regret, so this section attempts to explain the nature of the changes, and
the reasons.

7.1.1 Performance Issues

Earlier versions ofgplexproduced scanners with poor performance on large input files.
All file buffers were built on top of a buffered byte-stream, and the byte-stream position
was used for the buffer’sPosproperty. As a consequence calls toyylessandbuffer.Get-
Stringcaused IO seeks, with a large performance hit.

Version 1.1.0 uses an object of theStreamReaderclass to read the input stream, and
then buffers the resultingchar values in a double-buffer based on theStringBuilder
class. “Seek” within this buffer causes no IO activity, but simply indexes within the
builder. This solves the performance problem.

However, the ability to perform an arbitrary seek within the input file has been lost,
since the string builder tries to keep no more than two file-system pages in the buffer.
The default behavior of the buffers in version 1.1.0 is tonot reclaim buffer space. The
/noPersistBufferoption reduces the memory footprint for those application where the
buffers do not need to be persisted.

7 NOTES 49

Figure 29: User code forIncludeTestexample

public static void Main(string [] argp) {
if (argp.Length == 0)

Console .WriteLine("Usage: IncludeTest args");
else {

int tok;
Scanner scnr = new Scanner ();
scnr.SetSource(argp); // Create LineBuff object from args
do {

tok = scnr.yylex();
} while (tok > (int) Tokens .EOF);

}
}

private void TryInclude(string fName) {
if (fName == null)

Console .Error.WriteLine("#include, no filename");
else {

BufferContext savedCtx = MkBuffCtx();
SetSource(new FileStream (fName, FileMode .Open));
Console .WriteLine("Included file {0} opened" , fName);
bStack.Push(savedCtx); // Don’t push until after file open succeeds!

}
}

protected override bool yywrap() {
if (bStack.Count == 0) return true ;
RestoreBuffCtx(bStack.Pop());
Console .WriteLine("Popped include stack");
return false ;

}

7.1.2 Removing Unicode Encoding Limitations

Earlier versions ofgplexused character encodings which were built on top of a byte
stream. However, the available encodings were limited to theutf formats, or any of the
library encodings that have the “single byte property”. The current version may use any
of the encoders from theSystem.Globalizationnamespace of the base class libraries.

Scanners consume unicode code points, represented as integer values. However,
for all input sources the code point “position” is represented by the ordinal number of
the firstSystem.Charfrom which the code point is derived. See figure 13. There is
some small inefficiency involved forutf-8encodings where characters from outside the
basic multilingual planeare decoded to an integer value and then split into a surrogate
pair in the buffer. TheGetCodemethod will then merge the pair back into a single code
point to deliver to the scanning engine. This is a small price to pay for the convenience
of having a uniform representation for input position9.

9Several attempts were made to create a buffer class that directly buffered code points, but none performed
as well as theStringBuilderclass.

7 NOTES 50

7.1.3 Avoiding Name-Clashes with Multiple Scanners

For those applications that use multiple scanners, problems arose with name-clashes
in duplicated code. The new version moves all of the invariant, buffer code into the
separate resource “GplexBuffers”. This resource may either be included in the project
as a single file which may be shared between multiple scanners, or may be embedded
in each of the separate scanner namespaces. The default behavior is to embed the code
in the scanner namespace. The default is appropriate and simple for single-scanner
applications, particularly stand-alone scanner-based tools. See section 4.2 for more
detail.

An additional resource in version 1.1.0 is the possibility to limit the visibility of the
generated types, and to override the default naming of the scanner, token and scanner
base types.

7.1.4 Compliance withFxCop

Applications which embedgplexscanners trigger a large number of design-rule warn-
ings inFxCop. Some of these warnings relate to naming guidelines, while others im-
pact on code safety.

Version 1.1.0 generates scanners which areFxCop-friendly. Those guidelines which
gplexcannot honor, such as the naming of legacyAPI elements with names beginning
with “yy” are explicitly marked with a message suppression attribute. In most cases
the reason for the message suppression is noted in a source comment.

The major changes resulting from this exercise with the potential to break existing
applications fall into two categories. Some of the non-legacy members of the scanner
classes have been renamed. This will cause issues foruser-writtencode that accesses
internal scanner class members. This may require some renaming of identifiers. For
example, the abstract base class of scanners, defined ingppg, has been changed from
IScannerto AbstractScanner. User code probably never refers to this class, but if an
existing application happens to do this, the code will need changing. Similarly, user-
written semantic actions normally have no need to directly call the “get next codepoint”
function of the scanner class. However, if existing scanners do this, then it is relevant
that the name has changed fromGetChrto GetCode.

More serious is the restructuring and renaming of classes in the buffer code. All
of the concrete buffer classes are now private, and scanners access buffersonly via the
facilities presented by the abstractScanBuffclass. User code can only create buffer
objects using the static factory method-groupScanBuff.GetBuffer, or more sensibly,
using the scanner’sSetSourcemethod-group. For a tabular summary of potentially
breaking changes see Appendix 16.

7.2 Implementation Notes

Versions since 0.4.0 parse their input files using a parser constructed by Gardens Point
Parser Generator (gppg). Because it is intended to be used with a colorizing scanner
the grammar contains rules for both theLEX syntax and also many rules forC#. The
parser will match braces and other bracketing constructs within the code sections of
theLEX specification.gplexwill detect a number of syntax errors in the code parts of
the specification prior to compilation of the resulting scanner output file.

7 NOTES 51

Compatibility

The current version ofgplex is not completely compatible with eitherPOSIX LEXor
with Flex. However, for those features thatare implemented the behaviour follows
Flex rather thanPOSIXwhen there is a difference.

Thusgpleximplements the “<<EOF>>” marker, and both the “%x” and “%s” mark-
ers for start states. The semantics of pattern expansion also follows theFlex model. In
particular, operators applied to named lexical categories behave as though the named
pattern were surrounded by parentheses. Forthcoming versions will continue this pref-
erence.

Error Reporting

The default error-reporting behavior ofgppg-constructed parsers is relatively primitive.
By default the calls ofyyerror do not pass any location information. This means that
there is no flexibility in attaching messages to particular positions in the input text.
In contexts where theErrorHandler class supplies facilities that go beyond those of
yyerror it is simple to disable the default behaviour. The scanner base class created by
the parser defines an emptyyyerror method, so that if the concrete scanner class does
not overrideyyerror no error messages will be produced automatically, and the system
will rely on explicit error messages in the parser’s semantic actions.

In such cases the semantic actions of the parser will direct errors to the real error
handler, without having these interleaved with the default messages from the shift-
reduce parsing engine.

7.3 Limitations for Version 1.1.0

Version 1.1.0 supports anchored strings but does not support variable right context.
More precisely, inR1/ R2 at least one of the regular expressionsR2 andR1 must define
strings of fixed length. Either regular expression may be of arbitrary form, provided
all accepted strings are the same constant length. As well, the standard lex character
set definitions such as “[:isalpha:] ” are not supported. Instead, the character
predicates from the base class libraries, such asIsLetterare permitted.

The default action ofLEX, echoingunmatchedinput to standard output, is not
implemented. If you really need this it is easy enough to do, but if you don’t want it,
you don’t have to turn it off.

7.4 Installing GPLEX

gplex is distributed as a zip archive. The archive should be extracted into any conve-
nient folder. The distribution contains four subdirectories. The “binaries ” directory
contains the file:gplex.exe. In environments that have bothgplexand Gardens Point
Parser Generator (gppg), it is convenient to put the executables for both applications in
the same directory.

The “project ” directory contains theVisual Studioproject from which the current
version ofgplexwas built. The “documentation ” directory contains the files —

“Gplex.pdf ”,
“Gplex-Changelog.pdf ”, and the file
“GplexCopyright.rtf ”.

The “examples ” directory contains the examples described in this documentation.
The application requires version 2.0 of theMicrosoft .NETruntime.

7 NOTES 52

7.5 Copyright

Gardens PointLEX (gplex) is copyright c© 2006–2010, John Gough, Queensland Uni-
versity of Technology. See the accompanying document “GPLEXcopyright.rtf ”.
Code that you generate withgplexis not covered by thegplexlicence, it is your own.
In particular, the inclusion ofgplex library code in the generated code does not make
the generated code a ”derived work” ofgplex.

7.6 Bug Reports

Gardens PointLEX (gplex) is currently being maintained and extended by John Gough.
Bug reports and feature requests forgplexshould be posted to the issues tab of thegplex
page on CodePlex.

53

Part II

The Input Language

8 The Input File

8.1 Lexical Considerations

Everygplex-generated scanner operates either in byte-mode or in unicode-mode.gplex
scans its own input using a byte-mode scanner. It follows that the “*.lex ” files that
gplexreads are treated as streams of 8-bit bytes.

8.1.1 Character Denotations

Thegplexscanner operates in byte-mode. Nevertheless, the input files can define uni-
code scanners, and can denote character literals throughout the entire unicode range.
Denotations of characters ingplexmay be uninterpreted occurrences of plain charac-
ters, or may be one of the conventional character escapes, such as ‘\n ’ or ‘ \0 ’. As
well, characters may be denoted by octal, hexadecimal or unicode escapes.

In different contexts within aLEX specification different sets of characters have
special meaning. For example, within regular expressions parentheses “(,) ” are used
to denote grouping of sub-expressions. In all such cases the ordinary character is de-
noted by anescapedoccurrence of the character, by being prefixed by a backslash ‘\ ’
character. In the regular expression section 9 of this document the characters that need
to be escaped in each context are listed.

8.1.2 Names and Numbers

There are several places in the input syntax where names and name-lists occur. Names
in version 1.0 are simple,ASCII, alphanumeric identifiers, possibly containing the low-
line character ‘_’. This choice, while restrictive, makes input files independent of host
code page setting. Name-lists are comma-separated sequences of names.

Numbers are unformatted sequences of decimal digits.gplexdoes not range-check
these values. If a value is too large for theint type an exception will be thrown.

8.2 Overall Syntax

A lex file consists of three parts: thedefinitionssection, therules section, and the
user-codesection10.

LexInput
: DefinitionSequence “%%” RulesSection UserCodeSectionopt
;

UserCodeSection
: “%%” UserCodeopt
;

TheUserCodesection may be left out, and if is absent the dividing mark “%%” may be
left out as well.

10 Grammar fragments in this documentation will follow the meta-syntax used forgppgand other bottom-
up parsers.

8 THE INPUT FILE 54

8.3 The Definitions Section

The definitions section contains several different kinds of declarations and definitions.
Each definition begins with a characteristic keyword marker beginning with “%”, and
must be left-anchored.

DefinitionSequence
: DefinitionSequenceopt Definition
;

Definition
: NamespaceDeclaration
| UsingDeclaration
| VisibilityDeclaration
| NamingDeclaration
| StartConditionsDeclaration
| LexicalCategoryDefintion
| CharacterClassPredicatesDeclaration
| UserCharacterPredicateDeclaration
| UserCode
| OptionsDeclaration
;

8.3.1 Using and Namespace Declarations

Two non-standard markers in the input file are used to generateusing andnamespace

declarations in the scanner file.
The definitions section must declare the namespace in which the scanner code will

be placed. A sensible choice is something likeAppName.Lexer . The syntax is —
NamespaceDeclaration

: “%namespace” DottedName
;

whereDottedNameis a possibly qualifiedC# identifier.
The following namespaces are imported by default into the file that contains the

scanner class —
using System;
using System.IO;
using System.Text;
using System.Globalization;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.Diagnostics.CodeAnalysis;

If buffer code isnot embedded in the scanner file, thenQUT.GplexBuffersis imported
also.

Any other namespaces that are needed by user code or semantic actions must be
specified in a “%using ” declaration.

UsingDeclaration
: “%using ” DottedName ‘ ; ’
;

For scanners that work on behalf ofgppg-generated parsers it would be necessary to
import the namespace of the parser. A typical declaration would be —

%using myParserNamespace;
Note that the convention for the use of semicolons follows that ofC#. Using declara-
tions need a semicolon, namespace declarations do not.

Every input file must have exactly one namespace declaration. There may be as
many, or few, using declarations as are needed by the user.

8 THE INPUT FILE 55

8.3.2 Visibility and Naming Declarations

Four non-standard declarations are used to control the visibility and naming of the
types used in thegplex API. The visibility declaration has the following syntax —

VisibilityDeclaration
: “%visibility ” Keyword
;

whereKeywordmay be eitherpublic or internal . The declaration sets the visibility
of the typesTokens, ScanBase, IColorScan, Scanner. The default is public.

Naming declarations have the following syntax —

NamingDeclaration
: “%scanbasetype ” Identifier
| “%scannertype ” Identifier
| “%tokentype ” Identifier
;

whereIdentifier is a simpleC# identifier.
These declarations declare the name of the corresponding type within the generated

scanner. In the absence of naming declarationsgplexgenerates a scanner as though it
had seen the declarations —

%scannertype Scanner
%scanbasetype ScanBase
%tokentype Tokens

It is important to remember that the code of the scannerdefinesthe scanner class name.
The scanner base class and the token enumeration name are defined in the parser, so the
corresponding naming declarations really aredeclarations. These declarations must
synchronize with the definitions in the parser specification. The naming declaration
syntax is identical in thegplexandgppgtools.

In the case of stand-alone scanners, which have no parser, all three naming decla-
rationsdefinethe type names.

8.3.3 Start Condition Declarations

Start condition declarations define names for variousstart conditions. The declarations
consist of a marker: “%x” for exclusive conditions, and “%s” for inclusive conditions,
followed by one or more start condition names. If more than one name follows a
marker, the names are comma-separated. The markers, as usual, must occur on a line
starting in column zero.

Here is the full grammar for start condition declarations —

StartConditionsDeclaration
: Marker NameList
;

Marker
: “%x” | “%s”
;

NameList
: ident
| NameList ‘ , ’ ident
;

8 THE INPUT FILE 56

Such declarations are used in the rules section, where they predicate the application
of various patterns. At any time the scanner is in exactly one start condition, with
each start condition name corresponding to a unique integer value. On initialization a
scanner is in the pre-defined start condition “INITIAL” which always has value 0.

When the scanner is set to anexclusivestart conditiononly patterns predicated on
that exclusive condition are “active”. Conversely, when the scanner is set to aninclusive
start condition patterns predicated on that inclusive condition are active, and so are all
of the patterns that are unconditional11.

8.3.4 Lexical Category Definitions

Lexical category code defines named regular expressions that may be used as sub-
expressions in the patterns of the rules section.

LexicalCategoryDefinition
: ident RegularExpression
;

The syntax of regular expressions is treated in detail in Section 9 A typical example
might be —

digits [0-9]+

which definesdigits as being a sequence of one or more characters from the character
class ‘0’ to ‘9’. The name being defined must start in column zero, and the regular
expression defined is included for used occurrences in patterns. Note that forgplex
this substitution is performed by tree-grafting in theAST, not by textual substitution,
so each defined pattern must be a well formed regular expression.

8.3.5 Character Class Membership Predicates

Sometimes user code of the scanner needs to test if some computed value corresponds
to a code-point that belongs to a particular character class.

CharacterClassPredicatesDeclaration
: “%charClassPredicate ” NameList

;

NameListis a comma-separated list of lexical category names, which must denote char-
acter classes.

For example, suppose that some support code in the scanner needs to test if the
value of some unicode escape sequence denotes a code point from some complicated
character class, for example —

ExpandsOnNFC [...] // Normalization length not 1

This is the set of all those unicode characters which do not have additive length in
normalization form C. The actual definition of the set has been abstracted away.

Now gplexwill generate the set from the definition (probably using the unicode
database) at scanner generation time. We want to be able to look up membership of
this set at scannerruntimefrom the data in the automaton tables. The following decla-
ration —

%charClassPredicate ExpandsOnNFC

causesgplexto generate a public instance method of the scanner class, with the follow-
ing signature —

11 gplexfollows theFlexsemantics bynot adding rules explicitly markedINITIAL to inclusive start states.

8 THE INPUT FILE 57

public bool Is ExpandsOnNFC(int codepoint);

This method will test the given code-point for membership of the given set.
In general, for every nameN in theNameLista predicate function will be emitted

with the nameIs N , with the signature —
public bool Is N (int codepoint);

8.3.6 User Character Predicate Declaration

Character classes ingplexmay be generated from any of the built-in character predicate
methods of the.NET runtime, or any of the three other built-in functions thatgplex
itself defines (see Section 9.2.5).

If a user needs to make use of additional character class predicates, then the user
may supply aPE-file containing a class which implements theQUT.Gplex.ICharTest-
Factoryinterface shown in Figure 30. TheGetDelegatemethod of the interface should

Figure 30: Interface for user character predicates

namespace QUT.Gplex
{

public delegate bool CharTest (int codePoint);

public interface ICharTestFactory {
CharTest GetDelegate(string name);

}
}

return delegates which implement the predicate functions. These might either be user-
written code, or existing library methods with matching signatures.

User character predicates are declared in theLEX specification with the following
syntax.

UserCharacterPredicateDeclaration
: “%userCharPredicate ” ident ‘ [’ DottedName ‘] ’ DottedName
;

This declaration associates the simple name of theident with the method specified in
the rest of the command. The first dotted name is the filename of the library in which
the interface implementation is found. The second dotted name is the name of the
class which implements the interface with the last component of the name being the
argument which is sent toGetDelegate.

A use-example might be aLEX file containing the following —
%userCharPredicate Favorites [MyAssembly.dll]MyClass.Test

This states that the identifierFavoritesis associated with the nameTestin the named
assembly. If, later in the specification, a character class is defined using the usual
syntax —

FavoritesSet [[:Favorites:]]

then the following will happen —

* gplexwill look for the PE-file “MyAssembly.dll ” in the current directory and,
if successful, load it.

8 THE INPUT FILE 58

* gplexwill use reflection to find the classMyClassin the loaded assembly.

* gplexwill create an instance of the class, and cast it to theICharTestFactorytype.

* gplexwill invoke GetDelegatewith argument “Test ”.

* gplexwill invoke the returned delegate for every codepoint in the unicode alpha-
bet, to evaluateFavoritesSet.

If the PE-file cannot be found, or the assembly cannot be loaded, or the named class
cannot be found, or the class does not implement the interface, or the returned delegate
value is null, then an error occurs.

8.3.7 User Code in the Definitions Section

Any indented code, or code enclosed in “%{” ... “%}” delimiters is copied to the output
file.

UserCode
: “%{” CodeBlock “%}”
| IndentedCodeBlock
;

As usual, the%-markers must start at the left margin.
CodeBlockis arbitraryC# code that can correctly be textually included inside a

class definition. This may include constants, member definitions, sub-type definitions,
and so on.

IndentedCodeBlockis arbitraryC# code that can correctly be textually included
inside a class definition. It is distinguished from other declaratory matter by the fact
that each line starts with whitespcace.

It is considered good form to always use the “%{” ... “%}” delimited form, so that
printed listings are easier to understand for human readers.

8.3.8 Comments in the Definitions Section

Block comments, “/* ... */ ”, in the definition section that begin in column zero,
that isunindentedcomments, are copied to the output file. Any indented comments
are taken as user code, and are also copied to the output file. Note that this is different
behaviour to comments in the rules section.

Single line “// ” comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output. Consider the following user code fragment —

%{
// This is whitespace
void Foo() // This gets copied
{ // This gets copied
} // This is whitespace

%}
The text-span of the code block reaches from “void ” through to the final right brace.
Single line comments within this text span will be copied to the scanner source file.
Single line comments outside this text span are treated as whitespace.

8 THE INPUT FILE 59

8.3.9 Option Declarations

The definitions section may include option markers with the same meanings as the
command line options described in Section 2.1. Option declarations have the format —

OptionsDeclaration
: “%option ” OptionsList
;

OptionsList
: Option
| OptionsList ‘ , ’opt Option
;

Options within the definitions section begin with the “%option ” marker followed
by one or more option specifiers. The options may be comma or white-space separated.

The options correspond to the command line options. Options within the definitions
section take precedence over the command line options. A full list of options is in
Section 15.

Some options make more sense on the command line than as hard-wired definitions,
but all commands are available in both modalities.

8.4 The Rules Section

8.4.1 Overview of Pattern Matching

The rules section specifies the regular expression patterns that the generated scanner
will recognize. Rules may be predicated on one or more of the start states from the
definitions section.

Each regular expression declaration may have an associatedSemantic Action. The
semantic action is executed whenever an input sequence matches the regular expres-
sion.gplexalways returns thelongestinput sequence that matches any of the applicable
rules of the scanner specification. In the case of a tie, that is, when two or more patterns
of the same length might be matched, the pattern which appears first in the specification
is recognized.

The longest match rule means thatgplex-created scanners sometimes have to “back
up”. This can occur if one pattern recognizes strings that are proper prefixes of some
strings recognized by a second pattern. In this case, if some input has been scanned
that matches the first pattern, and the next character could belong to the longer, second
pattern, then scanning continues. If it should happen that the attempt to match the
longer pattern eventually fails, then the scanner must back up the input and recognize
the first pattern after all.

The main engine of pattern matching is a method namedScan. This method is an
instance method of the scanner class. It uses the tables of the generated automaton
to update its state, invoke sematic actions whenever a pattern is matched, and return
integer values to its caller denoting the pattern that has been recognized.

8.4.2 Overall Syntax of Rules Section

The marker “%%” delimits the boundary between the definitions and rules sections.

8 THE INPUT FILE 60

RulesSection
: PrologCodeopt RuleList EpilogCodeopt
;

RuleList
: RuleListopt Rule
| RuleListopt RuleGroup
;

PrologCode
: UserCode
;

EpilogCode
: UserCode
;

The user code in the prolog and epilog may be placed in “%{” ... “%}” delimiters or
may be an indented code block.

TheCodeBlockof the optional prologUserCodeis placed at the start of theScan
method. It can contain arbitrary code that is legal to place inside a method body12.
This is the place where local variables that are needed for the semantic actions should
be declared.

The CodeBlockof the optional epilogUserCodeis placed in a catch block at the
end of theScanmethod. This code is therefore guaranteed to be executed for every
termination ofScan. This code block may contain arbitrary code that is legal to place
inside a catch block. In particular, it may access local variables of the prolog code
block.

Code interleavedbetweenrules, whether indented or within the special delimiters,
has no sensible meaning, attracts a warning, and is ignored.

8.4.3 Rule Syntax

The rules have the syntax —
Rule

: StartConditionListopt RegularExpression Action
;

StartConditionList
: ‘<’ NameList ‘>’
| ‘<’ ‘ * ’ ‘ >’
;

Action
: ‘ | ’
| CodeLine
| ‘{’ CodeBlock “}”
;

Start condition lists are optional, and are only needed if the specification requires more
than one start state. Rules that are predicated with such a list are only active when (one
of) the specified condition(s) applies. Rules without an explicit start condition list are
implicitly predicated on theINITIAL start condition.

The names that appear within start condition lists must exactly match names de-
clared in the definitions section, with just two exceptions. Start condition values cor-
respond to integers in the scanner, and the default start conditionINITIAL always has

12And therefore cannot contain method definitions, for example.

8 THE INPUT FILE 61

number zero. Thus in start condition lists “0” may be used as an abbreviation forINI-
TIAL. All other numeric values are illegal in this context. Finally, the start condition
list may be “<*> ”. This asserts that the following rule should apply in every start state.

The Action code is executed whenever a matching pattern is detected. There are
three forms of the actions. An action may be a single line ofC#code, on the same line
as the pattern. An action may be a block of code, enclosed in braces. The left brace
must occur on the same line as the pattern, and the code block is terminated when the
matching right brace is found. Finally, the special vertical bar character, on its own,
means “the same action as the next pattern”. This is a convenient rule to use if multiple
patterns take the same action13.

Semantic action code typically loads up theyylval semantic value structure, and
may also manipulate the start condition by calls toBEGIN(NEWSTATE) , for example.
Note thatScanloops forever reading input and matching patterns.Scanexits only
when an end of file is detected, or when a semantic action executes a “return token”
statement, returning the integer token-kind value.

The syntax of regular expressions is treated in detail in Section 9

8.4.4 Rule Group Scopes

Sometimes a number of patterns are predicated on the same list of start conditions. In
such cases it may be convenient to userule group scopesto structure the rules section.
Rule group scopes have the following syntax —

RuleGroup
: StartConditionList ‘{’ RuleList ‘}’
;

StartConditionList
: ‘<’ NameList ‘>’
| ‘<’ ‘ * ’ ‘ >’
;

The rules that appear within the scope are all conditional on the start condition list
which begins the scope. The opening brace of the scope must immediately follow the
start condition list, and the opening and closing braces of the scope must each be the
last non-whitespace element on their respective lines.

As before, the start condition list is a comma-separated list of known start condition
names between ‘<’ and ‘>’ characters. The rule list is one or more rules, in the usual
format, each starting on a separate line. It is common for the embedded rules within
the scope to be unconditional, but it is perfectly legal to nest either conditional rules or
rule group scopes. In nested scopes the effect of the start condition lists is cumulative.
Thus —

<one>{
<two>{

foo { FooAction(); }
bar { BarAction(); }

}
}

has exactly the same effect as —

13And this is not just a matter of saving on typing. Whengplexperforms state minimization two accept
states are only able to be considered for merging if the semantic actions are the same. In this context “the
same” means using the same text span in the lex file.

9 REGULAR EXPRESSIONS 62

<one,two>{
foo { FooAction(); }
bar { BarAction(); }

}

or indeed as the plain, old-fashioned sequence —

<one,two>foo { FooAction(); }
<one,two>bar { BarAction(); }

It is sensible to use indentation to denote the extent of the scope. So this syntax neces-
sarily relaxes the constraint that rules must start at the beginning of the line.

Note that almost any non-whitespace characters following the left brace at the start
of a scope would be mistaken for a pattern. Thus the left brace must be the last character
on the line, except for whitespace. As usual, “whitespace” includes the case of aC#-
style single-line comment.

8.4.5 Comments in the Rules Section

Comments in the rules section that begin in column zero, that isunindentedcomments,
are not copied to the output file, and do not provoke a warning about “code between
rules”. They may thus be used to annotate the lex file itself.

Any indentedcommentsare taken as user code. If they occur before the first rule
they become part of the prolog of theScanmethod. If they occur after the last rule they
become part of the epilog of theScanmethod.

Single line “// ” comments may be included anywhere in the input file. Unless they
are embedded in user code they are treated as whitespace and are never copied to the
output.

8.5 The User Code Section

The user code section contains nothing but user code. Because of this, it is generally
unnecessary to use the “%{ ... % }” markers to separate this code from declarative
matter. All of the text in this section is copied verbatim into the definition for the
scanner class.

SincegplexproducesC# partial classes, it is often convenient to move all of the
user code into a “scan-helper” file to make the lex input files easier to read.

9 Regular Expressions

9.1 Concatenation, Alternation and Repetition

Regular expressions are patterns that define languages of strings over some alphabet.
They may define languages of finite or infinite cardinality. Regular expressions ingplex
must fit on a single line, and are terminated by any un-escaped white space such as a
blank character not in a character class.

9.1.1 Definitions

Regular expressions are made up of primitive atoms which are combined together by
means of concatenation, alternation and repetition. Concatenation is a binary operation,

9 REGULAR EXPRESSIONS 63

but has an implicit application in the same way as some algebraic notations denoteab
to mean “a multiplied byb”.

If R1 andR2 are regular expressions defining languagesL1 andL2 respectively,
thenR1R2 defines the language which consists of any string fromL1 concatentated
with any string fromL2.

Alternation is a binary infix operation. It is denoted by the vertical bar character
‘ | ’. If R1 andR2 are regular expressions defining languagesL1 andL2 respectively,
thenR1| R2 defines the language which consists all the strings from eitherL1 or L2.

Repetition is a unary operation. There are several forms of repetition with different
markers. The plus sign ‘+’ is used as a suffix, and denotes one or more repetitions
of its operand. IfR is a regular expressions defining languageL then R+ defines
the language which consists one or more strings fromL concatenated together. Note
that the use of the word “repetition” in this context is sometimes misunderstood. The
defined language is not repetitions of thesamestring fromL but concatenations of any
members ofL .

9.1.2 Operator Precedence

The repetition markers have the highest precedence, concatenation next highest, with
alternation lowest. Sub-expressions of regular expressions are grouped using parenthe-
ses in the usual way.

If ‘ a’, ‘ b’ and ‘c ’ are atoms denoting themselves, then the following regular ex-
pressions define the given languages.

a defines the language with just one string{ “a” }.
a+ defines the infinite language{ “a”, “ aa”, “ aaa ”, ... }.
ab defines the language with just one string{ “ab” }.

a|b defines the language with two strings{ “a”, “ b” }.
ab|c defines the language with two strings{ “ab”, “ c” }.

a(b|c) defines the language with two strings{ “ab”, “ ac ” }.
ab+ defines the infinite language{ “ab”, “ abb ”, “ abbb ”, ... }.

(ab)+ defines the infinite language{ “ab”, “ abab ”, “ ababab ”, ... }.

and so on.

9.1.3 Repetition Markers

There are three single-character repetition markers. These are —

* The suffix operator ‘+’ defines a language which contains all the strings formed
by concatentating one or more strings from the language defined by its operand
on the left.

* The suffix operator ‘* ’ defines a language which contains all the strings formed
by concatentating zero or more strings from the language defined by its operand
on the left. IfR is some regular expression,R* defines almost the same language
as R+. The language defined using the “star-closure” contains just one extra
element, the empty string “”.

* The suffix operator ‘?’ defines a language which concatentates zero or one string
from the language defined by its operand on the left. IfR is some regular expres-
sion,R? defines almost the same language asR. The language defined using the
“optionality” operator contains just one extra element, the empty string “”.

9 REGULAR EXPRESSIONS 64

The most general repetition marker allows for arbitrary upper and lower bounds
on the number of repetitions. The general repetition operator{N , M}, whereN and
M are integer constants, is is a unary suffix operator. When it is applied to a regular
expression it defines a language which concatenates betweenN andM strings from
the language defined by the operand on its left. It is an error ifN is greater thanM . If
there is no upper bound, then the second numerical argument is left out, but the comma
remains. Note however that the{N , } marker must not have whitespace after the
comma. Ingplexun-escaped whitespace terminates the candidate regular expression.

If both the second numerical argumentandthe comma are taken out then the opera-
tor defines the language that contains all of the strings formed by concatenating exactly
N (possibly different) strings from the language defined by the operand on the left.

We have the following identities for any regular expressionR —

R+ = R{1, } // One or more repetitions
R* = R{0, } // Zero or more repetitions
R? = R{0,1 } // Zero or one repetition

R{N} = R{N , N} // ExactlyN repetitions

As may be seen, all of the simple repetition operators can be thought of as special cases
of the general{N , M} form.

It is an interesting but not very useful fact that, conversely, every instance of the
general repetition form can be written in terms of concatenation, alternation, the ‘* ’
operator and theempty languagewhich we denoteε. Here is a hint of the proof. First
we have two shift rules that allow us to reduce the lower repetition count by one at each
application, so long as the count remains non-negative —

R{N ,} = RR{N − 1, } // Start-index shift rule
R{N ,M} = RR{N − 1, M − 1} // Finite-index shift rule

After we have reduced the lower bound to zero, we can do an inductive step —

R{0,1 } = (ε| R) // Zero or one repetition
R{0,2 } = (ε| R| RR) // Zero, one or two repetitions

... // And so on ... with limit case —
R{0, } = R* // Zero or more repetitions

Using this result we could, for example, write —

R{3, } = RRRR*
R{3,5 } = RRR(ε| R | RR)

9.2 Regular Expression Atoms

9.2.1 Character Denotations

Characters that do not have a special meaning in a particular context, and which are
represented in thegplex input alphabet are used to represent themselves. Thus the
regular expressionfoo defines a language that has just one string: “foo”.

Characters that have some format affect on the input must be escaped, so the usual
control characters inC#are denoted as\\ , \ a, \ b, \ f, \ n, \ r, \ t, \ v, \ 0, exactly as in
C#14.

14Note however that the regular expression\n matches theASCII LF character, while\\n matches the
length-2 literal string which could be written either as@"\n" or as"\\n" in aC#source file.

9 REGULAR EXPRESSIONS 65

In contexts in which a particular character has some special meaning, that character
must be escaped in the same way, by prefixing the character by a ‘\ ’.

To denote characters that cannot be represented by a single byte in the input file,
various numerical escapes must be used. These are —

* Octal escapes‘ \ ddd’ where thed are octal digits.

* Hexadecimal escapes‘ \x hh’ where theh are hexadecimal digits.

* Unicode escapes‘ \u hhhh’ where theh are hexadecimal digits.

* Unicode escapes‘ \U hhhhhhhh’ where theh are hexadecimal digits.

In the final case the hexadecimal value of the codepoint must not exceed 0x10ffff.
Within a regular expressions the following characters have special meaning and

must be escaped to denote their uninterpreted meaning —

‘ . ’, ‘ " ’, ‘ (’, ‘) ’, ‘ {’, ‘ }’, ‘ [’, ‘] ’, ‘ +’, ‘ * ’, ‘ / ’, ‘ | ’, ‘ ’

This list is in addition to the usual escapes for control characters and characters that
require numerical escapes.

The last character in the list is the space character. It appears here because a space
signals the end of the regular expression ingplex.

9.2.2 Lexical Categories – Named Expressions

Lexical categories are named regular expressions that may be used as atoms in other
regular expressions. Expressions may be named in the definitions section of the input
file. Used occurrences of these definitions may occur in other named regular expres-
sions, or in the patterns in the rules section.gplex implements a simple “declaration
before use” scoping rule for such uses.

Used occurrences of lexical categories are denoted by the name of the expression
enclosed in braces “{name}”.

As an example, if we have named regular expressions for octal, hex and unicode
escape characters earlier in the input file, we may define all the numerical escapes as a
new named expression —

NumericalEscape {OctalEscape }| {HexEscape }| {UnicodeEscape }

Roughly speaking, themeaningof a used occurrence of a named expression is
obtained by substituting the named expression into the host expression at the location
of the used occurrence. In the case ofgplexthe effect is as if the named expression is
surrounded by parentheses. This is different to the earliest implementations ofLEX,
which performed a textual substitution, but is equivalent to the semantics ofFlex.

This particular choice of semantics means that if we have an expression named as
“keyword” say —

keyword foo|bar

and then use this lexical category in another expression —

the {keyword } // Expands asthe(foo|bar) , not asthefoo|bar

The language defined by this expression contains two strings,{ “ thefoo ”, “ thebar ”}.
With the originalLEX semantics the defined language would have contained the two
strings{ “ thefoo ”, “ bar ”}.

A consequence of this choice is that every named pattern must be a well-formed
regular expression.

9 REGULAR EXPRESSIONS 66

9.2.3 Literal Strings

Literal strings in the usualC# format are atoms in a regular expression.
The meaning of a literal string is exactly the same as the meaning of the regular

expression formed by concatenating the individual characters of the string. For sim-
ple cases, enclosing a character sequence in quotes has no effect. Thus the regular
expressionfoo matches the same pattern as the regular expression"foo" .

However there are two reasons for using the string form: first, a string is an atom,
so the regular expression"foo"+ defines the language{ “ foo ”, “ foofoo ”, ...}, while
the regular expressionfoo+ defines the language{ “ foo ”, “ fooo ”, “ foooo ” ...}. Sec-
ondly, the only ordinary character that must be escaped within a literal string is ‘" ’,
together of course with the control characters and those requiring numerical escapes.
This may make the patterns much more readable for humans.

9.2.4 Character Classes

Character classes are sets of characters. When used as atoms in a regular expression
they match any character from the set. Such sets are defined by a bracket-enclosed list
of characters, character-ranges and character predicates. There is no punctuation in the
list of characters, so the definition of of a named expression for the set of the decimal
digits could be written —

digits [0246813579]

The digits have deliberately been scrambled to emphasise that character classes are
unordered collections, and the members may be added in any order.

For sets whererangesof contiguous characters are members, we may use the char-
acter range mechanism. This consists of the first character in the range, the dash char-
acter ‘- ’, and the last character in the range. The same set as the last example then
could have been written as —

digits [0-9] // Decimal digits

It is an error if the ordinal number of the first character is greater than the ordinal
number of the last character.

We can also definenegatedsets, where the members of the set are all those charac-
tersexceptthose that are listed as individual characters or character ranges. A negated
set is denoted by the caret character ‘ˆ ’ as the first character in the set. Thus, all of the
charactersexceptthe decimal digits would be defined by —

notDigit [ˆ0-9] // Everything but digits

Within a character class definition the following characters have special meaning:
‘] ’, marking the end of the set; ‘- ’, denotes the range operator, except as the first or last
character of the set; ‘ˆ ’, denotes set inverse, but only as the first character in the set. In
all locations where these characters have their special meaning they must be escaped
in order to denote their literal character value.

The dash character- does not need escaping if it is the first or last character in the
set, butgplexwill issue a warning to make sure that the literal meaning was intended.

The usual control characters are denoted by their escaped forms, and all of the
numerical escapes may be used within a character class.

9 REGULAR EXPRESSIONS 67

9.2.5 Character Class Predicates

Some of the character classes that occur with unicode scanners are too large to easily
define explicitly. For example, the set of all those unicode codepoints which (according
to ECMA-334) are possible first characters of aC# identifier contains 92707 characters
which appear in 362 ranges.

Within a character class, the special syntax “[: PredicateMethod:] ” denotes all
of the characters from the selected alphabet15 for which the corresponding.NET base
class library method returns the true value. The implemented methods are —

* IsControl, IsDigit, IsLetter, IsLetterOrDigit, IsLower, IsNumber, IsPunctuation,
IsSeparator, IsSymbol, IsUpper, IsWhiteSpace

There are three additional predicates built intogplex—

* IsFormatCharacter— Characters with unicode category Cf

* IdentifierStartCharacter— Valid identifier start characters forC#

* IdentifierPartCharacter— Valid continuation characters forC# identifiers, ex-
cluding category Cf

Note that the bracketing markers “[: ” and “:] ” appear within the brackets that delimit
the character class. For example, the following two character classes are equal.

alphanum1 [[:IsLetterOrDigit:]]
alphanum2 [[:IsLetter:][:IsDigit:]]

These classes arenot equivalent to the set —

alphanum3 [a-zA-Z0-9]

even in the 8-bit case, since this last class does not include all of the alphabetic charac-
ters from the latin alphabet that have diacritical marks, such asä andñ.

These character predicates are intended for use with unicode scanners. Their use
with byte-mode scanners is complicated by the code page setting of the host machine.
For futher information on this, see the section “Character Predicates in Byte-Mode
Scanners” in the Part III

New in version 1.0.2 ofgplex is the ability for users to define their own character
predicate functions. This feature is specified in Section 8.3.6.

9.2.6 The Dot Metacharacter

The “dot” character, ‘. ’, has special meaning in regular expressions. It meansany
character except ‘\n ’ . This traditional meaning is retained forgplex.

The “dot” is often used to cause a pattern matcher to match everything up to the
end-of-line. It works perfectly for files that use theUNIX end-of-line conventions.
However, for maximum portability in unicode scanners it is better for the user to define
a character class which isany character exceptanyof the unicode end-of-line charac-
ters. This set can be defined by —

any [ˆ\r\n\u0085\u2028\u2029]

Given this definition, the character class{any } can be used any place where the tradi-
tional dot would have been used.

15In the non-unicode case, the sets will include only those byte values that correspond to unicode char-
acters for which the predicate functions return true. In the case of the /unicode option, the full sets are
returned.

10 SPECIAL SYMBOLS IN SEMANTIC ACTIONS 68

9.2.7 Context Markers

The context operators ofgplexare used to declare that particular patterns should match
only if the input immediately preceeding the pattern (theleft context) or the input im-
mediately following the pattern (theright context) are as requested.

There are three context markers:left-anchor ‘ ˆ ’, right-anchor ‘$’, and theright
contextoperator “/ ”.

A left-anchored pattern̂R, whereR is some regular expression, matches any in-
put that matchesR, but only if the input starts at the beginning of a line. Similarly, a
right-anchored patternR$, whereR is some regular expression, matches any input that
matchesR, but only if the input finishes at the end of a line. Traditional implementa-
tions ofLEX define “end of the line” as whatever theANSI Ccompiler defines as end
of line. gplexaccepts any of the standard line-end markers. For byte-mode scanners,
either ‘\n ’ or ‘ \r ’ will match the right-anchor condition. For unicode-mode scanners
the right-anchor character set is “[\n\r\x85\u2085\u2086] ”.

The expressionR1/ R2 matches text that matchesR1 with right context matching
the regular expressionR2. The entire string matchingR1R2 participates in finding the
longest matching string, but only the text corresponding toR1 is consumed. Similarly
for right anchored patterns, the end of line character(s) participate in the longest match
calculation, but are not consumed.

It is a limitation of the currentgplex implementation that when the right-context
operator is used, as inR1/ R2 at least one ofR1 or R2 must define a language of
constant length strings.

9.2.8 End-Of-File Marker

Finally, there is one more special marker thatgplexrecognizes. The character sequence
“<<EOF>>” denotes a pattern that matches the end-of-file. The marker may be condi-
tional on some starting condition in the usual way, but cannot appear as a component of
any other pattern. Beware that pattern"<<EOF>>" (with the quotes) exactly matches
the seven-character-long pattern “<<EOF>>”, while the pattern<<EOF>> (without
the quotes) matches the end-of-file.

10 Special Symbols in Semantic Actions

10.1 Properties of the Matching Text

10.1.1 The yytext Property

Within the semantic action of a patternR, this read-only property returns astring

containing the input text that matchesR.
If a semantic action calls theyylessmethod, it will modifyyytext. In the case of a

pattern with right-context, the string has already had the right context trimmed.

10.1.2 The yyleng Property

Theyylengproperty returns the length of the input text that matched the pattern. It is a
read-only property.

The length is given in codepoints, that is, logical characters. For many text file
encodingsyylengis less than the number of bytes read. Even in the case of string input

10 SPECIAL SYMBOLS IN SEMANTIC ACTIONS 69

the number of codepoints will be less than the number ofchar values, if the string
contains surrogate pairs.

10.1.3 The yypos Property

Theyyposproperty returns the position of the input file buffer at the start of the input
text that matched the pattern. It is a read-only property.

Althoughyyposreturns an integer value, it should be treated as opaque. In particu-
lar, arithmetic usingyyposandyylengwill not behave as expected.

10.1.4 The yyline Property

Theyylineproperty returns the line-number at the start of the input text that matched
the pattern. It is a read-only property. Line numbers count from one.

10.1.5 The yycol Property

Theyycolproperty returns the column-number at the start of the input text that matched
the pattern. It is a read-only property. Column numbers count from zero at the start of
each line.

10.2 Looking at the Input Buffer

Everygplex-generated scanner has an accessible buffer object as a field of the scanner
object. There are many different buffer implementations, all of which derive from the
abstractScanBuffclass.

The last character to be read from the buffer is stored within the scanner in the field
code.

10.2.1 Current and Lookahead Character

When a pattern has been matched, the scanner fieldcodeholds the codepoint of the
last character to be read. This is an integer value. The value is not part of the current
pattern, but will be the first character of the input text that the scanner matchesnext.

In every casecodeis the input character that follows the last character ofyytext.
Thus for patterns with right contextcodeis the first character of the context, and calls
to yylessthat discard characters will change the value.

Buffer implementations in version 1.1.0 ofgplexdo not contain a buffer lookahead
Peekmethod. This method now exists as a private method in the scanner class. The
new method always returns a valid unicode code point, or the special end-of-file value.

10.2.2 The yyless Method

After a scanner has matched a pattern, theyylessmethod allows some or all of the input
text to be pushed back to the buffer.

void yyless(int len); // Discard all but the firstlencharacters

Following this call,yytextwill be len characters long, andbuffer.Pos, yylengandcode
will have been updated consistently.

This method can either trimyytextto some fixed length, or can cut a fixed length
suffix from the text. For example, to push back the last character of the textyy-
less(yyleng−1) should be called.

10 SPECIAL SYMBOLS IN SEMANTIC ACTIONS 70

A useful idiom when changing from one start condition to another is to recognize
the pattern that starts the new phase, change the start condition, and callyyless(0) .
In that way the starting pattern is scanned again in the new condition. Here is an
example for scanning block comments. The scanner has aCMNT start condition, and
the relevant rules look like this —

\/* BEGIN(CMNT); yyless(0); // No return!
<CMNT>...

Note that both the slashand the star characters must be escaped in the regular expres-
sion.

In this way, theCMNT “mini-scanner” will get to seeall of the comment, including
the first two characters. It is then possible for the comment scanner to return with a
yytextstring that contains the whole of the comment.

10.2.3 The yymore Method

This method is not implemented in the current version ofgplex.

10.3 Changing the Start Condition

10.3.1 TheBEGIN Method

TheBEGINmethod sets a new start condition. Start conditions correspond to constant
integer values in the scanner. The initial condition always has value one, but the values
assigned bygplex to other start conditions is unpredictable. Therefore the argument
passed to the call ofBEGINshould always be thenameof the start condition, as shown
in the example in the discussion ofyyless.

10.3.2 TheYY STARTProperty

YYSTARTis a read-write property that gets or sets the start condition. SettingYYSTART
to some valueX is precisely equivalent to callingBEGIN(X) .

Reading the value ofYYSTARTis useful for those complicated scenarios in which
a pattern applies to multiple start conditions, but the semantic action needs to vary
depending on the actual start condition. Code of the following form allows this behav-
ior —

SomePattern { if (YY START == INITIAL)
... else ...

}
Another scenario in whichYYSTARTis used is those applications where the parser

needs to manipulate the start condition of the scanner. TheYYSTARTproperty has
internal accessibility, and hence may be set by a parser in the samePE-file as the
scanner.

10.4 Stacking Start Conditions

For some applications the use of the standard start conditions mechanism is either
impossible or inconvenient. The lex definition language itself forms such an example,
if you wish to recognize theC# tokens as well as the lex tokens. We must have start
conditions for the main sections, for the code inside the sections, and for comments
inside (and outside) the code.

10 SPECIAL SYMBOLS IN SEMANTIC ACTIONS 71

One approach to handling the start conditions in such cases is to use astackof start
conditions, and to push and pop these in semantic actions.gplexsupports the stacking
of start conditions when the “stack ” command is given, either on the command line,
or as an option in the definitions section. This option provides the methods shown in
Figure 31. These are normally used together with the standardBEGIN method. The

Figure 31: Methods for Manipulating the Start Condition Stack

// Clear the start condition stack
internal void yy clear stack();

// Push currentScOrd, and set currentScOrd to “state”
internal void yy push state(int state);

// Pop start condition stack into currentScOrd
internal int yy pop state();

// Fetch top of stack without changing top of stack value
internal int yy top state();

first method clears the stack. This is useful for initialization, and also for error recovery
in the start condition automaton.

The next two methods push and pop the start condition values, while the final
method examines the top of stack without affecting the stack pointer. This last is useful
for conditional code in semantic actions, which may perform tests such as —

if (yy top state() == INITIAL) ...

Note carefully that the top-of-stack state is not the current start condition, but is the
value that willbecomethe start condition if “pop” is called.

10.5 Miscellaneous Methods

10.5.1 TheECHO Method

This method echos the recognized text to the standard output stream. It is equivalent
to

System. Console .Write(yytext);

72

Part III

Using Unicode

11 Overview

Gardens PointLEX (gplex) is a scanner generator which accepts a “LEX-like” specifi-
cation, and produces aC# output file. The scanners produced bygplexcan operate in
two modes —

* Byte Mode, in which patterns of seven or eight-bit bytes are specified, and the
input source is read byte-by-byte. This mode corresponds to the traditional se-
mantics ofLEX-like scanner generators.

* Unicode Mode. In this mode the patterns are specified as regular expressions
over the unicode alphabet. The generated scanner matches sequences of code-
points. TraditionalLEX has no equivalent semantics.

The choice between byte-mode and unicode-mode is made at scanner generation time,
either by a command-line option togplex, or an option marker in the specification file.

For unicode mode scanners, the input to the generated scanner must be decoded
according to some known encoding scheme. This choice is made at scanner-runtime.
Unicode text files with a valid unicode prefix (sometimes called aByte-Order-Mark,
“BOM”) are decoded according to the scheme specified by the prefix. Files without a
prefix are interpreted according to a “fallback code page” option. This option may be
specified at scanner generation time. The scanner infrastructure also provides methods
to allow scanner applications to override the default at scanner runtime, or even to defer
choice until after scanning the entire file.

11.1 Gplex Options for Unicode Scanners

The following options ofgplexare relevant to the unicode features of the tool.

/codePage:Number

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the code page with the specified number. If there is
no such code page an exception is thrown and processing terminates.

/codePage:Name

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the code page with the specified name. If there is no
such code page an exception is thrown and processing terminates.

/codePage:default

In the event that an input file does not have a unicode prefix, the scanner will map the
bytes of the input file according to the default code page of the host machine. This
option is the default for unicode scanners.

11 OVERVIEW 73

/codePage:guess

In the event that an input file does not have a unicode prefix, the scanner will rapidly
scan the file to see if it contains any byte sequences that suggest that the file is either
utf-8or that it uses some kind of single-byte code page. On the basis of this scan result
the scanner will use either the default code page on the host machine, or interpret the
input as autf-8file. See Section 12.5 for more detail.

/codePage:raw

In the event that an input file does not have a unicode prefix, the scanner will use the
uninterpreted bytes of the input file. In effect, only codepoints from 0 to u+00ff will be
delivered to the scanner.

/unicode

By defaultgplexgenerates byte-mode scanners that use 8-bit characters, and read in-
put files byte-by-byte. This option allows for unicode-capable scanners to be created.
Using this option implicitly uses character equivalence classes.

/noUnicode

This negated form of the /unicode option is the default forgplex.

/utf8default

This option is deprecated. It will continue to be supported in version 1.0. However, the
same effect can be obtained by using “/codePage:utf-8 ”.

/noUtf8default

This option is deprecated. It will continue to be supported in version 1.0. However, the
same effect can be obtained by using “/codePage:raw ”.

11.2 Unicode Options for Byte-Mode Scanners

Most of the unicode options forgplexhave no effect when a byte-mode scanner is being
generated. However, the code page options have a special rôle in the special case of
character set predicates.

The available character set predicates ingplexare those supplied by the.NETbase
class libraries. These predicates are specified over the unicode character set. On a
machine with that uses a single-byte code pagegplexmust know what that code page
is, in order to correctly construct character sets such as “[:IsPunctuation:] ”.

The available options are —

/codePage:Number

If a character set predicate is used, the set will include all the byte values which corre-
spond in the code page mapping to unicode characters for which the predicate is true.
The nominated code page must have the single-byte property.

12 SPECIFYING SCANNERS 74

/codePage:Name

If a character set predicate is used, the set will include all the byte values which corre-
spond in the code page mapping to unicode characters for which the predicate is true.
The nominated code page must have the single-byte property.

/codePage:default

If a character set predicate is used, the set will include all the byte values which cor-
respond to unicode characters for which the predicate is true. In this case the mapping
from byte values to unicode characters is performed according to the default code page
of thegplexhost machine. The default code page must have the single-byte property.

/codePage:raw

If a character set predicate is used, the set will include all the byte values which numer-
ically correspond to unicode codepoints for which the predicate is true.

Caution

Character set predicates should be used with caution in byte-mode scanners. The po-
tential issue is that the byte-mode character sets are computed at scanner generation
time. Thus, unlike the case of unicode scanners, the code page of the scanner host
machine must be known at scanner generation time rather than at scanner runtime (see
also section 12.2).

12 Specifying Scanners

The scanning engine thatgplexproduces is a finite state automaton (FSA)16 This FSA
deals with codepoints from either theASCIIor Unicodealphabet. Byte-mode scanners
have the conceptual form shown in Figure 32 (repeated from Figure 9 in Part I). The

Figure 32: Conceptual diagram of byte-mode scanner

Nextstate
Function

Current State

Un-encoded
byte value

Next
State

un-encoded byte values of the input are used by the “next-state” function to compute
the next state of the automaton.

In the unicode case the sequence of input values may come from a string ofSys-
tem.Charvalues, or from a file. Unicode codepoints need 21-bits to encode, so some
interpretation of the input is required for either input form. The conceptual form of the

16(Note for the picky reader) Well, the scanner isusuallyanFSA. However, the use of the “/stack” option
allows state information to be stacked so that in practice suchgplex-generated recognizers can have the power
of a push-down automaton.

12 SPECIFYING SCANNERS 75

scanner is shown in Figure 33 for the case of file input. (This figure is repeated here
from Figure 10 in Part I). The corresponding diagram forstring input differs only in

Figure 33: Conceptual diagram of unicode scanner

Character
Decoding

Nextstate
Function

Current State

Encoded
byte stream

Next
State

Codepoint

that the input is a sequence ofSystem.Charvalues rather than bytes.
Forgplexversion 1.0 the scanner thatgplexuses to read its own input (the “*.lex ”

file) operates in byte-mode. Nevertheless, the input byte-mode text may specify either
a byte-mode scanner asgplex-output, or a unicode-mode scanner as output.

Because of the choice of byte-mode forgplex input, literal characters in specifi-
cations denote precisely the codepoint that represents that character in the input file.
Characters that cannot denote themselves in character literals must be specified by
character escapes of various kinds.

In this section we consider the way in which byte-mode scanners and unicode scan-
ners respectively are specified while complying with this constraint. Issues of porta-
bility of specifications and generated scanners across globalization boundaries are also
discussed.

12.1 Byte Mode Scanners

In byte-mode scanners, the only valid codepoints are in the range from ‘\ 0’ to ‘ \ xff’.
Whengplexinput specifies a byte-mode scanner, character literals in regular expression
patterns may be: literals such as ‘a’, one of the traditional control code escapes such as
‘ \ 0’ or ‘ \ n’, or any other of the allowed numeric escapes.

The allowed numeric escapes are octal escapes ‘\ ddd’, where thed are octal dig-
its; hexadecimal escapes ‘\ xhh’, where theh are hexadecimal digits; unicode escapes
‘ \ uhhhh’ and ‘\ Uhhhhhhhh’, where theh are hexadecimal digits. If the specification
is for a byte-mode scanner the numerical value of any character literal must be less than
256, or an error occurs.

It is important to see that even for byte-mode scanners, these choices lead to certain
kinds of portability issues across cultures. Let us examine an example.

Suppose that a specification file is being prepared with an editing system that uses
the Western European (Windows) code page 1252. In this case the user can enter a
literal character ‘ß’, thesharp scharacter. This character will be represented by a
byte 0xdf in the specification file. The byte-mode scanner which is generated will
treat any 0xdf byte as corresponding to this character. To be perfectly clear: when the
specification is viewed in an editor it may display asharp sbut gplexneither knows
nor cares about how characters are displayed on the screen. Whengplexreads its input
it will find a 0xdf byte, and will interpret it as meaning “a byte with value 0xdf”.

Suppose now that the same specification is viewed on a machine which uses the
Greek (Windows) code page 1253. In this case the same character literal will be dis-
played as the characterί, small letter iota with tonos. Nevertheless, the scanner that

12 SPECIFYING SCANNERS 76

gplexgenerates on the second machine will be identical to the scanner generated on the
first machine.

Thus the choice of a byte-mode scanner forgplex-input achieves portability in the
sense that any specification that does not use character predicates will generate a pre-
cisely identical scanner on every host machine. However, it is unclear whether, in
general, themeaningof the patterns will be preserved across such boundaries.

In summary, byte-mode scanners handle the full 8-bit character set, but different
code pages may ascribe different meanings to character literals for the upper 128 char-
acters. Byte-mode scanners are inherently non-portable across cultures.

12.2 Character Class Predicates in Byte-Mode Scanners

Scanner specifications may use character set literals in the familiar form, the archetyp-
ical example of which is “[a-zA-Z] ”. In gplexcharacter set definitions may also use
character predicates, such as “[[:IsLetter:]] ”. In traditionalLEX, the names of
the character predicates are those available in “libc ”. In gplexthe available predicates
are from the.NETbase class library, and apply to unicode codepoints.

Consider the following example: a byte-mode specification declares a character set

PunctuationChars [[:IsPunctuation:]]

Now, the base class library function allows us to easily generate a set ofunicodecode-
pointsp such that the static predicate

Char .IsPunctuation(p);

returns true. Sadly, this is not quite what we need for a byte-mode scanner. Recall that
byte-mode scanners operate on uninterpreted byte-values, as shown in figure 32. What
we need is a set of byte-valuesv such that

Char .IsPunctuation(Map(v));

returns true, for the mappingMapdefined by some code page.
For example, in the Western European (Windows) character set the ellipsis charac-

ter ‘. . .’ is byte 0x85. The ellipsis is a perfectly good punctuation character, however

Char .IsPunctuation((char)0x85);

is false! The problem is that the ellipsis character is unicode codepoint u+2026, while
unicode codepoint u+0085 is the “newline” control characterNEL. All of the characters
of the iso-8859 encodings that occupy the byte-values from 0x80 to 0x9f correspond
to unicode characters from elsewhere in the space.

The character set “[:IsLetter:] ” provides another example. For a byte-mode
scanner using the Western European code page 1252, this set will contain 126 mem-
bers. The same set has only 123 members in code page 1253. In the uninterpreted, raw
case the set has only 121 members.

Nevertheless, it is permissible to generate character sets using character predicates
in the byte-mode case. When this is done, the user may specify the code page that maps
between the byte-values that the generated scanner reads, and the unicode codepoints
to which they correspond.

If no code page is specified, the mapping is taken from the default code page of the
machine on which gplex is running. This poses no problem if the machine on which
the generated scanner will run has the same culture settings as the generating machine,
or if the code page of the scanner host is known with certainty at scanner generation
time. Other cases may lack portability.

12 SPECIFYING SCANNERS 77

12.3 Unicode Mode Scanners

The unicode standard ascribes unique 21-bitcodepointsfor every defined character17.
Thus, if we want to recognizeboth the ‘ß’ characterand the ‘́ι’ character then we
must use a unicode scanner. In unicode ß has codepoint u+00df, whileί has codepoint
u+03af.

In unicode-mode scanners, the valid codepoints are in the range from u+0000 to
u+10ffff. As was the case for byte-mode, character literals in the specification file may
be literals such as ‘a’, one of the traditional control code escapes such as ‘\ 0’, or ‘\ n’,
or any other of the allowed numeric escapes.

The allowed numeric escapes are just as for the byte-mode case: octal escapes
‘ \ ddd’, where thed are octal digits; hexadecimal escapes ‘\ xhh’, where theh are hex-
adecimal digits; unicode escapes ‘\ uhhhh’ and ‘\ Uhhhhhhhh’, where theh are hex-
adecimal digits. However, in this case the unicode escapes may evaluate to a codepoint
up to the limit of 0x10ffff.

Since unicode scanners deal with unicode codepoints, it is best practise to always
use unicode escapes to denote characters beyond the (7-bit)ASCIIboundary. Thus our
two example characters should be denoted ‘\ u00df’ and ‘\ u03af’ respectively.

Reading Scanner Input

The automata of unicode scanners deal only with unicode codepoints. Thus the scan-
ners thatgplex produces must generate the functionality inside the left-hand box in
figure 33. ThisCharacter Decodingfunction maps the bytes of the input file (or the
characters of a string) into the codepoints that the scanner automaton consumes.

In the best of all worlds, the problem is simple. If the scanner’s input file is encoded
using “little-endian” utf-16 our two example characters will each take two bytes. The
ß character will be denoted by two bytes{0xdf, 0x00}, while the ί character will be
denoted by the two bytes{0xaf, 0x03}.

If the scanner’s input file is encoded using utf-8 our two example characters will
again take two bytes each. The ß character will be denoted by two bytes{0xc3, 0x9f},
while theί character will be denoted by the two bytes{0xce, 0x9f}.

In both of these cases, the files should begin with a prefix which unambiguously
indicates the format of the file. If a file is opened which does not start with a prefix
then there is a problem.

Consider the case of a byte file prepared using either code page 1252 or code page
1253. Of course, such a file cannot contain both ß andί characters, since both of
these are denoted by the same byte value 0xdf. The question is — if such a file is
being scanned and a 0xdf byte is found — what codepoint should be delivered to the
automaton18? Note that unlike the “utf-with-prefix” cases there is no certain way to
know what code page a file was encoded with, and hence no certain way to know what
decoding to use.

At the time thatgplexgenerates a scanner, either a command line “/codePage: ”
option or a “%option ” declaration in the specification may specify the fall-back code
page that should be used if an input file has no unicode prefix. A common choice is
“ /codePage:default ”, which treats files without prefix as 8-bit byte files encode

17This is not the same as saying that every character has an unambiguous meaning. For example, in the
CJK compatabilityregion of unicode ideograms with different meanings in Chinese, Japanese and Korean
may share the same codepoint provided they share the same graphical representation.

18We have discussed only two possibilities here. Other code pages will give many additional meanings to
the same 0xdf byte value.

12 SPECIFYING SCANNERS 78

according to the default code page on the host machine. This is a logical choice when
the input files are prepared in the same culture as the scanner host machine. In fact,
this is the fallback thatgplexuses in the event that no code page option is specified.

The other common choice is “/codePage:utf-8 ”, which treats files without pre-
fix as utf-8 files anyway.

If it is known for certain that input files will have been generated using a code
page that is different to the host machine, then that known code page may be explicitly
specified as the fallback. Note however, that this fallback will be applied toeveryfile
that the scanner encounters that does not have a prefix. In such cases it is more useful
to allow the fallback to be specified to the scanner application on a file-by-file basis.
How to do this is the subject of the next section.

What may we conclude from this discussion?

* Use unicode scanners for global portability whenever possible.

* Input files to unicode scanners should always be in one of the utf formats, when-
ever that is possible. Always place a prefix on such files.

* Consider using the default fallback to the host-machine code page unless it is
known at scanner generation time that input files will originate from another
culture.

* Applications that usegplex scanners should allow users to override the code
page fallback when it is known that a particular input file originates from another
culture.

12.4 Overriding the Codepage Fallback at Application Runtime

The fallback code page that is specified at scanner generation time is hardwired into
the code of the generated scanner. However, an application that uses agplexscanner
may need to have its fallback code page changed for a particular input file when the
encoding of that file is known.

Scanners generated bygplex implement a static method with the following signa-
ture —

public static int GetCodePage(string command);

This method takes a string argument, which is a code page-setting command from the
calling application. If the command begins with the string “code page:” this prefix is
removed, and the remaining string is converted to a code page index. The command
may specify either a code page name or a number, or the special values “raw”, “default”
or “guess”. Raw denotes no interpretation of the raw byte values, while “default” de-
codes according to the default code page of the host machine. Finally, “guess” attempts
to determine the code page from the byte-patterns in the file. These semantics are the
same as the/codePage:option ofgplex, which indeed invokes this same method.

The method is found in the buffer code of the generated scanner. If the/noEmbed-
Buffersoption is in force the method will be in the classQUT.GplexBuffers.CodePage-
Handling. For the default, embedded buffer case, the classCodePage-Handlingis
directly nested in the same namespace as theScannerclass.

There are two constructors for the scanner objects in each unicode scanner that
gplexgenerates. One takes a stream object as its sole argument, while the other takes
a stream object and a command string denoting the fallback code page. The second
constructor passes the string argument toGetCodePage, and then sends the resulting

12 SPECIFYING SCANNERS 79

integer to the appropriate call ofSetSource19. Alternatively, the application may di-
rectly callSetSourceitself, as shown below.

An application program that wishes to set the fallback code page of its scanner
on a file-by-file basis should follow the example of the schema in Figure 34. If the

Figure 34: Using theGetCodePagemethod

string codePageArg = null ;
...
// Process the code page argument
if (arg.StartsWith("codepage:"))

codePageArg = arg;
...
// Instantiate a scanner
FileStream file = new FileStream (...);
Scanner scnr = new Scanner ();
if (codePageArg != null) {

int cp = CodePageHandling .GetCodePage(codePageArg);
scnr.SetSource(file, cp);

}
else // Use machine default code page, arg1 = 0

scnr.SetSource(file, 0);
...

application passes multiple input files to the same scanner instance, then an appropriate
value for the fallback code page should be passed to each subsequent call ofSetSource
in the same way as shown in the figure.

12.5 Adaptively Setting the Codepage

There are occasions in which it is not possible to predict the code page of input files
that do not have a unicode prefix. This is the case, for example, with programming
language scanners that deal with input that has been generated by a variety of different
text editing systems.

In such cases, if an input file has no prefix, a last resort is to scan the input file
to see if it contains some byte value sequences that unambiguously indicate the code
page. In principle the problem has no exact solution, so we may only hope to make a
correct choice in the majority of cases.

Version 1.0.0 ofgplexcontains code to automate this decision process. In this first
release the decision is only made between theutf-8code page and the default code page
of the host machine. The option is activated either by using the command line option
“ /codePage:guess ”, or by arranging for the host application to pass this command
to theGetCodePagemethod.

The code that implements the decision procedure scans the whole file. The “guesser”
is a very lean example of agplex-generated byte-modeFSA. ThisFSAsearches for byte
sequences that correspond to well-formed two, three and four-byte utf-8 codepoints.
The automaton forms a weighted sum of such occurrences. The automaton also counts

19In the case of byte-mode scanners there is no fallback code page, so only the first constructor is gener-
ated.

13 INPUT BUFFERS 80

bytes with values greater than 128 (“high-bytes”) which do not form part of any legal
utf-8 codepoint.

If a file has an encoding with the single-byte property there should be many more
high-bytes than legal utf-8 sequences, since the probability of random high-bytes form-
ing legal utf-8 sequences is very low. In this event the host machine code page is
chosen.

Conversely if a file is encoded in utf-8 then there should be many multi-byte utf-8
patterns, and a zero high-byte count. In this event a utf-8 decoder is chosen for the
scanner.

Note that it is possible to deliberately construct an input that tricks the guesser
into a wrong call. Nevertheless, the statistical likelyhood of this occurring without
deliberation is very small.

There is also a processing cost involved in scanning the input file twice. However,
the auxiliary scanner is very simple, so the extra processing time will generally be
significantly less than the runtime of the final scanner.

13 Input Buffers

Whenever a scanner object is created, an input buffer holds the current input text. There
are three concrete implementations of the abstractScanBuffclass. Two are used for
string input, and the last for any kind of file input.

TheScanBuffclass in Figure 35 is the abstract base class of the stream and string

Figure 35: Features of theScanBuffClass

public abstract class ScanBuff {
...
public abstract int Pos { get ; set ; }
public abstract int Read();
public abstract string GetString(int begin, int end);

}

buffers of the generated scanners. The important public features of this class are the
property that allows setting and querying of the buffer position, and the creation of
strings corresponding to all the text between given buffer positions. ThePosproperty
returns the character index in the underlying input stream.

The methodReadreturns an integer corresponding to the ordinal value of the next
character, and advances the input position by one or more input elements.Readreturns
–1 for end of file.

New buffers are created by calling one of theSetSourcemethods of the scanner
class. The signatures of these methods are shown in Figure 36, repeated here from
Figure 6.

13.1 String Input Buffers

There are two classes for string input:StringBuffwhich holds a single string of input,
andLineBuff which holds a list of lines.

13 INPUT BUFFERS 81

Figure 36: Signatures ofSetSourcemethods

// Create a string buffer and attach to the scanner. Start reading from offsetofst
public void SetSource(string source, int ofst);

// Create a line buffer from a list of strings, and attach to the scanner
public void SetSource(IList <string > source);

// Create a stream buffer for a byte-file, and attach to the scanner
public void SetSource(Stream src);

// Create a text buffer for an encoded file, with the specified encoding fallback
public void SetSource(Stream src, int fallbackCodepage);

Scanners that accept string input should always be generated with the/unicode
option. This is because non-unicode scanners will throw an exception if they are passed
a codepoint greater than 255. Unless it is possible to guarantee that no input string will
contain such a character, the scanner will be unsafe.

The StringBuff Class

If the scanner is to receive its input as a single string, the user code passes the input to
the first of theSetSourcemethods, together with a starting offset value —

public void SetSource(string s, int ofst);

This method will create a buffer object of theStringBuff type. Colorizing scanners for
Visual Studioalways use this method.

Buffers of this class consume either one or two characters for each call ofRead,
unless the end of string has been found, in which case theEOF value−1 is returned.
Two characters are consumed if they form a surrogate pair, and the caller receives
a single codepoint which in this case will be greater than u+ffff. Calls directly or
indirectly toGetStringthat contain surrogate pairs will leave the pair as two characters.

The LineBuff Class

An alternative string interface uses a data structure that implements theIList<string >
interface —

public void SetSource(IList <string > list);

This method will create a buffer object of theLineBuff type. It is assumed that each
string in the list has been extracted by a method likeReadLinethat will remove the
end-of-line marker. When the end of each string is reached the bufferReadmethod
will report a ‘\n ’ character, for consistency with the other buffer classes. In the case
that tokens extend over multiple strings in the listbuffer.GetStringwill return a string
with embedded end of line characters.

13.2 File Input Buffers

All file input to gplex is held in a buffer of theBuildBuffer class. In every case the
sequence of bytes in the file is transformed into a sequence of code points supplied

13 INPUT BUFFERS 82

Figure 37: Detail of Character Decoding

Character
DecodingEncoded

byte stream

String-
Builder
buffer

Surrogate
pair handling Codepointchar char

to the scanner by the scheme shown in Figure 37, repeated here from Figure 13. The
various generation-time options and scanner-runtime code page settings simply modify
the processing in the rectangular boxes of the figure.

The various possibilities are —

* GetBufferis called with a single,Streamargument. This is the only possibility
in the case of a byte-mode scanner. In this case the character decoding is trivial,
with the bytes of the stream added unmodified to the buffer. In this case surrogate
pairs cannot arise, so the right-hand box in the figure is empty also.

* GetBufferis called with theStreamand a fallback code page argument. In all
such cases the scanner checks if the stream begins with a validutf-prefix. If a
prefix is detected an appropriateStreamReaderobject is created, and transforms
the bytes of the stream to the characters in the buffer. The buffer is filled with
block-read operations rather than character by character.

* If the two-argument version ofGetBufferis called but no prefix is found then
there are three special cases, and a general case. The general case is to create a
StreamReaderusing whatever encoding is specified by the fallback code page.
The three special cases are the distinguished fallback values “raw”, “default”
and “guess”. The raw value reverts to byte-mode decoding. The default value
uses the default code page of the runtime host machine. Finally, the guess value
causes the entire file to be scanned before a choice is made betweenutf-8and the
default code page of the host machine. See also the discussion in section 12.5.

83

Part IV

Appendices

14 APPENDIX A: TABLES 84

14 Appendix A: Tables

14.1 Keyword Commands

Keyword Meaning
%x This marker declares that the following list of

comma-separated names denote exclusive start
conditions.

%s This marker declares that the following list of
comma-separated names denote inclusive start
conditions.

%using The dotted name following the keyword will be
added to the namespace imports of the scanner
module.

%namespace This marker defines the namespace in which the
scanner class will be defined. The namespace ar-
gument is a dotted name. This marker must occur
exactly once in the definition section of every in-
put specification.

%option This marker is followed by a list of option-names,
as detailed in section 15. The list elements may be
comma or white-space separated.

%charClassPredicate This marker is followed by a comma-separated list
of character class names. The class names must
have been defined earlier in the text. A member-
ship predicate function will be generated for each
character class on the list. The names of the pred-
icate functions are generated algorithmically by
prefixing “Is ” to the name of each character class.

%userCharPredicate This marker is followed by a simple identifier and
the designator of a user-suppliedCharTestdele-
gate. When the identifier is used in a character
class definitiongplex will call the user delegate
to evaluate the character class at scanner creation
time. See section 8.3.6 for usage rules.

%visibility This marker controls the visibility of theScanner
class. The permitted arguments arepublic and
internal . The default ispublic .

%scannertype The identifier argumentdefinesthe scanner class
name, overriding the defaultScannername.

%scanbasetype The identifier argumentdeclaresthe name of the
scanner base class defined by the parser. This
overrides theScanBasedefault.

%tokentype The identifier argumentdeclaresthe name of the
token enumeration type defined by the parser.
This overrides theTokensdefault.

14 APPENDIX A: TABLES 85

14.2 Semantic Action Symbols

Certain symbols have particular meanings in the semantic actions ofgplexparsers. As
well as the symbols listed here, methods defined in user code of the specification or its
helper files will be accessible.

Symbol Meaning
yytext A read-only property which lazily constructs the text of

the currently recognized token. This text may be invali-
dated by subsequent calls ofyyless.

yyleng A read-only property returning the number of symbols of
the current token. In the unicode case this is not neces-
sarily the same as the number of characters or bytes read
from the input.

yypos A read-only property returning the buffer position at the
start of the current token.

yyline A read-only property returning the line number at the start
of the current token.

yycol A read-only property returning the column number at the
start of the current token.

yyless A method that truncates the current token to the length
given as theint argument to the call.

BEGIN Set the scanner start condition to the value nominated in
the argument. The formal parameter to the call is of type
int , but the method is always called using the symbolic
name of the start state.

ECHO A no-arg method that writes the current value ofyytextto
the standard output stream.

YY_START A read-write property that gets or sets the current start
ordinal value. As withBEGIN, the symbolic name of the
start condition in normally used.

yy_clear_stack ‡ This no-arg method empties the start condition stack.
yy_push_state ‡ This method takes a start condition argument. The cur-

rent start condition is pushed and the argument value be-
comes the new start condition.

yy_pop_state ‡ This method pops the start condition stack. The previous
top of stack becomes the new start state.

yy_top_of_stack ‡ This function returns the value at the top of the start con-
dition stack. This is the value that would become current
if the stack were to be popped.

‡ This method only applies with the/stackoption.

15 APPENDIX B: GPLEX OPTIONS 86

15 Appendix B: GPLEX Options

15.1 Informative Options

The following options are informative, and cannot be negated —

help Send the usage message to the console
codePageHelp Send help for the code page options to the console
out: out-file-path Generate a scanner output file with the prescribed

name
frame: frame-file-path Use the specified frame file instead of seeking

“gplexx.frame” on the built-in search path
codePage: code-page-arg For unicode scanners: deal with input files that

have noUTF prefix in the nominated way. For
byte-mode scanners: interpret the meaning of
character class predicates according to the encod-
ing of the nominated code page.

15.2 Boolean Options

The following options correspond to Boolean state flags withingplex. They can each
be negated by prefixing “no” to the command name —

Option Meaning Default
babel Include interfaces for Man-

aged Babel framework
default is noBabel

caseInsensitive Create a case-insensitive
scanner

default is noCaseInsen-
sitive

check Compute the automaton, but
do not create an output file

default is noCheck

classes Use character equivalence
classes in the automaton

unicode default is
classes

compress Compress all tables of the
scanner automaton

default is compress

compressMap Compress the equivalence
class map

unicode default is com-
pressMap

compressNext Compress the next-state ta-
ble of the scanner

default is compressNext

embedBuffers Embed buffer code in the
scanner namespace

default is embedBuffers

files Provide file-handling code
in scanners

default is files

listing Generate a listing, even
when there are no errors

default is noListing

minimize Minimize the number of
states of the automaton

default is minimize

parseOnly Check the input, but do not
construct an automaton

default is noParseOnly

Table continues on next page...

15 APPENDIX B: GPLEX OPTIONS 87

Boolean Options Continued ...

Option Meaning Default
parser Expect type definitions from

a host parser
default is parser

persistBuffer Do not reclaim buffer space
during scanning

default is persistBuffer

stack Allow for start conditions to
be stacked

default is noStack

squeeze Generate the automaton
with the smallest tables

default is noSqueeze

summary Write out automaton statis-
tics to the listing file

default is noSummary

unicode Generate a unicode-mode
(not byte-mode) scanner

default is noUnicode

verbose Sendgplex’ progress infor-
mation to the console

default is noVerbose

version Sendgplexversion details to
the console

default is noVersion

16 APPENDIX C: BREAKING CHANGES 88

16 Appendix C: Breaking Changes

A number of symbols have changed their names or locations in version 1.1.0. The
following table describes the changes that may be necessary for existing applications
that use the previous members.

Name Resolution
Buffer constructors There are no public buffer constructors. Buffers may only

be created using the explicit, staticGetBuffermethods of
ScanBuff, or by using the scanner’sSetSourcemethods.

Parserconstructor There is only one constructor for the generic parser base
class. Any user-supplied constructors for the derived
Parserclass must pass a valid scanner reference (or null)
to the base constructor.

Parser.scanner The scanner field in the parser base class is only accessi-
ble through the property getterScanner. The scanner has
a setter for compatability with applications that attach the
scanner after creating the parser object. For the preferred
method see figure 1.

Scanner.GetChr This method has been renamedGetCode. The method
has always fetched a unicode code point, not necessarily
aSystem.Charvalue.

gppg.IScanner The name of the generic base class is changed toAb-
stractScanner. The namespace is nowQUT.Gppg. Note
the capitalization.

ScanBuff.ReadPos This property has been removed from the bufferAPI. In-
stead there is a private field of the scanner instance named
readPosthat may be used instead.

ScanBuff.Peek This property has been removed from the bufferAPI. In-
stead there is a private method of the scanner instance
namedPeekthat returns the next code point.

Index
AbstractScanner.8, 10, 30
alphabet choice 19
“any” metacharacter 67

backtracking states 32
basic multilingual plane 20, 27
BEGIN. 11, 70,85
breaking changes, V1.1 88
BufferContextclass 23
bug reports . 52
byte and unicode mode 72
byte order markseeunicode prefix
byte-mode scanner16

character class predicates
built in predicates 67
in byte-mode scanners 76
user defined predicates 57

character equivalence classes. . .12,33
choosing codepage adaptively 79
choosing codepage at runtime 78
class membership predicates 56
code page options 72
codepage guesser example 46
colorizing scanners 25
common language runtime 6
compression options 33
context markers 68

left-anchor marker 68
right-anchor marker 68
right-context marker 68

limitations of 51
copyright . 52
current character 69

definitions section 54
comments in 58
options declarations 59
user code in 58

“dot”, ‘.’ metacharacter 67

ECHO . 71
empty string, matching the 42
end of file marker 68
equivalence classesseecharacter

equivalence classes
ErrorHandler 9, 24, 51

escape sequences53
character escapes 32
unicode escapes 26

file input buffers 81
finite state automaton 6, 12, 20
finite state machineseefinite state

automaton
frame file . 6,17
frame-file-path 13

GetBuffer.18, 82
gplex error messages 37
gplex input format 53–71
gplex keywords 84
gplex options .12

babel option26
Boolean options 86
case insensitive option 27
informative options 86
noFiles option 14
noParser option14
unicode option 26
verbose option 16

gplex warning messages 41
gppg parsers . 6

location information 28
using other parsers 27

ICharTestFactory. 57
IColorScaninterface 11
include file example 47
INITIAL .56, 60
input buffer access 69
installing gplex 51

keyword example 45

lexical category definitions 56
lookahead character 69

maxParseToken. 25
multiple input texts 22

chaining texts 22
include files 23

multiple scanners 28

namespace declaration 54

89

INDEX 90

partial class 6, 18
phase change pattern 42, 70

regular expression atoms
character class predicates 67
character classes 66

special characters in 66
character denotations.64

special characters in 65
lexical categories 65
literal strings 66

regular expressions 62
operator precedence.63
repetition markers 63
repetition ranges 64

renaming gplex types 55
rule group scopes61
rule syntax . 60
rules section . 59

comments in 62
user epilog code 60
user prolog code 60

ScanBase.9, 10, 25, 27
ScanBuff. .9, 18
scanner loops forever22, 42
scanner structure 17
semantic action symbols 85
semantic actions 61
ShiftReduceParser. 27, 30
shortest string example 16,32
stacking start conditions 30,70
stand-alone scanners 6,24, 55
“star”, * -closure 63
start condition scopes . .seerule group

scopes
start conditions55, 60
string input buffers 80
strings example 45
surrogate pairs 20

thread safety . 6
token enumeration 24
TSpantype parameter.31
TValuetype parameter 31

unicode prefix 19,72, 77, 79
unicode scanners 72–82
unicode-mode options 72
unicode-mode scanner16

user code section 62
user-defined character predicate . . . 57
using declarations 54

visibility of types.55

word count example 42

YYSTART. .70
yycol. .69
yyerror .8, 51
yyless. 11, 69,85
yylex. .8, 30
yyline. .69
yylloc . 8,30, 31
yylval . 8,30, 31
yymore. 11
yy pop state. 30, 42
yypos. .69
yy pushstate. 30, 42
yytext. 10, 68,85
yywrap. .9,22

	I Introduction to GPLEX
	Overview
	Typical Usage
	The Interfaces
	The IColorScan Interface

	Running the Program
	Gplex Options

	The Generated Scanner
	Byte-Mode and Unicode-Mode
	The Scanner File
	Choosing the Input Buffer Class
	How Buffering Works
	Multiple Input Sources
	Class Hierarchy
	Unicode Scanners
	Case-Insensitive Scanners
	Limitations

	Using GPLEX Scanners with Other Parsers

	Advanced Topics
	Location Information
	Applications with Multiple Scanners
	Stacking Start Conditions
	Setting yylval and yylloc
	The TValue Type Parameter
	The TSpan Type Parameter

	Backtracking Information
	Choosing Compression Options

	Errors and Warnings
	Errors
	Warnings

	Examples
	Word Counting
	ASCII Strings in Binary Files
	Keyword Matching
	The Code Page Guesser
	Include File Example

	Notes
	Moving From v1.0 to v1.1.0
	Performance Issues
	Removing Unicode Encoding Limitations
	Avoiding Name-Clashes with Multiple Scanners
	Compliance with FxCop

	Implementation Notes
	Limitations for Version 1.1.0
	Installing GPLEX
	Copyright
	Bug Reports

	II The Input Language
	The Input File
	Lexical Considerations
	Character Denotations
	Names and Numbers

	Overall Syntax
	The Definitions Section
	Using and Namespace Declarations
	Visibility and Naming Declarations
	Start Condition Declarations
	Lexical Category Definitions
	Character Class Membership Predicates
	User Character Predicate Declaration
	User Code in the Definitions Section
	Comments in the Definitions Section
	Option Declarations

	The Rules Section
	Overview of Pattern Matching
	Overall Syntax of Rules Section
	Rule Syntax
	Rule Group Scopes
	Comments in the Rules Section

	The User Code Section

	Regular Expressions
	Concatenation, Alternation and Repetition
	Definitions
	Operator Precedence
	Repetition Markers

	Regular Expression Atoms
	Character Denotations
	Lexical Categories -- Named Expressions
	Literal Strings
	Character Classes
	Character Class Predicates
	The Dot Metacharacter
	Context Markers
	End-Of-File Marker

	Special Symbols in Semantic Actions
	Properties of the Matching Text
	The yytext Property
	The yyleng Property
	The yypos Property
	The yyline Property
	The yycol Property

	Looking at the Input Buffer
	Current and Lookahead Character
	The yyless Method
	The yymore Method

	Changing the Start Condition
	The BEGIN Method
	The YY_START Property

	Stacking Start Conditions
	Miscellaneous Methods
	The ECHO Method

	III Using Unicode
	Overview
	Gplex Options for Unicode Scanners
	Unicode Options for Byte-Mode Scanners

	Specifying Scanners
	Byte Mode Scanners
	Character Class Predicates in Byte-Mode Scanners
	Unicode Mode Scanners
	Overriding the Codepage Fallback at Application Runtime
	Adaptively Setting the Codepage

	Input Buffers
	String Input Buffers
	File Input Buffers

	IV Appendices
	Appendix A: Tables
	Keyword Commands
	Semantic Action Symbols

	Appendix B: GPLEX Options
	Informative Options
	Boolean Options

	Appendix C: Breaking Changes

