
The GPPG Parser Generator
(Version 1.4.0 April 2010)

John Gough, Wayne Kelly QUT

April 18, 2010

About GPPG
Gardens Point Parser Generator (gppg) is a parser generator that produces parsers
written in theC#V2.0 language.gppggenerates bottom-up parsers.

The generated parsers recognize languages that areLALR(1), with the traditional
yacc disambiguations. There are a number of extensions of the traditional input
language that are necessary for correctness of the generatedC#output files.

The generated parsers are designed to interface cleanly with scanners generated by
Gardens PointLEX (gplex). However,gppg-generated parsers have been success-
fully used with both handwritten scanners and with scanners generated byCOCO/R.

A particular feature of the tool is the optional generation of an html report file that
allows easy navigation of the finite state automaton that recognizes the viable pre-
fixes of the specified language. The report shows the production items, lookahead
symbols and actions for each state of the automaton. It also optionally shows an
example of a shortest input, and shortestFSA-path reaching each state. This report
file considerably simplifies the diagnosis and removal of grammar conflicts.

1

CONTENTS 2

Contents

1 Overview 4
1.1 InstallingGPPG. 4
1.2 RunningGPPG . 4
1.3 UsingGPPGParsers . 5
1.4 Outputs . 5
1.5 Scanner Interface . 6
1.6 Instantiating the Parser Object .7
1.7 UsingGPPGParsers with Non-LEX Scanners 8

2 Input Grammar 8
2.1 Input Grammar Structure . 9
2.2 Declarations . 9

2.2.1 Declaring Tokens .10
2.2.2 Token Precedence .11
2.2.3 Declaring Non-Terminal Symbol Types11

2.3 Extensions to the Declaration Grammar12
2.3.1 Declaring an Output Filepath12
2.3.2 Creating a Token Definitions File12
2.3.3 Choosing the Namespace —12
2.3.4 Naming Types .12
2.3.5 Defining a Semantic Value Type13
2.3.6 Choosing the Semantic Value Type Name —13
2.3.7 Choosing the Location Type Name —14
2.3.8 Partial Types .14
2.3.9 Using Declarations — .14
2.3.10 Colorizing Scanners andmaxParseToken. 15
2.3.11 Colorizing Scanners andManaged Babel 15

2.4 Production Rules .15
2.4.1 Semantic Action Syntax .16
2.4.2 Controlling Precedence .16
2.4.3 Mid-Rule Actions . 18
2.4.4 Right-Hand-Side Syntax .19

2.5 Semantic Actions .19
2.5.1 Default Semantic Action .19

2.6 Location Tracking . 19
2.6.1 Location Actions . 20
2.6.2 Default Location Type . 20
2.6.3 Supplying a Different Location Type20
2.6.4 Special Behavior for Empty Productions21

3 Errors, Diagnostics and Warnings 22
3.1 Error Messages .22

3.1.1 Non-Terminating Diagnostics23
3.2 Warning Messages .24
3.3 Non-Terminating Grammars .25
3.4 Parser Conflict Messages .26

3.4.1 Reduce/Reduce Conflicts .26
3.4.2 Shift/Reduce Conflicts .26

LIST OF FIGURES 3

3.5 Conflict Diagnostics .27
3.5.1 The Report Option .27

4 Error Handling in GPPGParsers 29
4.1 Parser Action .29
4.2 Overriding the Default Error Handling29

5 Advanced Topics 30
5.1 Runtime Shift-Reduce Engine .30

5.1.1 Using the RuntimeDLL . 30
5.1.2 Using the Source Code File30

5.2 Applications with Multiple Parsers31
5.2.1 Parsers in Separate Assemblies31
5.2.2 All Parsers in a Shared Assembly31
5.2.3 Single-Assembly Applications32

5.3 Multiple Parser Instances .32
5.3.1 Sharing Parser Tables .32

6 Notes 32
6.1 Copyright . 32
6.2 Bug Reports .32

7 Examples 32
7.1 Integer Calculator .33

7.1.1 Running the Program .33
7.2 Real Number Calculator .34

7.2.1 Running the Program .34

8 Appendix A: GPPGSpecial Symbols 36
8.1 Keyword Commands .36
8.2 Semantic Action Symbols .37

9 Appendix B: Shift-Reduce Parsing Refresher 38
9.1 Some Definitions .38
9.2 How Shift-Reduce Parsing Works39
9.3 What Can Go Wrong .40

List of Figures

1 Concrete parser class .6
2 Scanner Interface ofGPPG . 7
3 Location types must implementIMerge 20
4 Default location-information class21
5 Grammar With Errors . 25
6 Reduce/Reduce Conflict Information26
7 Shift/Reduce Conflict Information26
8 State information with/report option 28
9 State information with/report and /verboseoptions 28
10 Start ofRealCalcspecification . 34
11 Extract fromRealCalcsemantic actions 35

1 OVERVIEW 4

1 Overview

These notes are brief documentation for the Gardens Point Parser Generator (gppg).
gppg is a parser generator which accepts a “YACC-like” specification, and pro-

duces aC# output file. Both the parser generator and the runtime components are
implemented entirely inC#. They make extensive use of the generic collection classes,
and so requireversion 2.0of the.NET framework.

Gardens Point Parser Generator (gppg) is normally distributed with the scanner
generator Gardens PointLEX (gplex). The two are designed to work together, although
each may be used separately.

If you want to begin by reviewing the input grammar accepted bygppg, then go
directly to section 2. Should you wish for a quick refresher on shift-reduce parsing, or
definitions for the terms used in this documentation, go to Appendix B, section 9.

1.1 Installing GPPG

gppgis distributed as a zip archive. The archive should be extracted into any convenient
folder. The distribution contains three subdirectories. The “bin ” directory contains
two PE-files: gppg.exeandShiftReduceParser.dll. The “source ” directory contains
all of the source code forgppg. The “doc ” directory contains the files “gppg.pdf ”,
“gppg-changelog.pdf ” and the file “GPPGcopyright.rtf ”.

Application programs that use parsers generated bygppgmay embed the invariant
code of the runtime componentShiftReduceParserin the application assembly, or may
access the separate assemblyQUT.ShiftReduceParser.dll. TheDLL is a strongly named
component and may be installed in the.NETfusion cache, or may be placed in the same
directory as the assembly that contains the parser.

The application requires version 2.0 of theMicrosoft .NETruntime.

1.2 RunningGPPG

gppgis invoked by the command —

“gppg ” [options] inputFile ‘>’ outputFile

Options are case-insensitive, with the available options —

* /babel — causesgppg to emit the additional interface required by theMan-
aged Babelpackage of theVisual Studio SDK, (see “Colorizing Scanners and
Managed Babel” in section 2.3.11).

* /conflicts — writes a file “basename.conflicts ” with detailed informa-
tion about any parser conflicts (see section 3.4).

* /defines — writes a file “basename.tokens ” with one token name per line.

* /gplex — makesgppgcustomize its output for the Gardens PointLEX (gplex)
scanner generator.

* /help — displays the usage message.

* /listing — causegppg to always produce a listing file, “basename.lst ”.
Without this optiongppgproduces a listing only if there are errors or warnings.

1 OVERVIEW 5

* /no-lines — suppresses emission of output#line directives. The hyphen is
optional, with “/nolines ” having the same effect.

* /report — generates a file “basename.report.html ” with LALR(1) state
information.

* /verbose — sends more detailed information to the console, and more de-
tailed information to the conflict andLALRreports.

* /version — displays version information forgppg.

The behavior ofgppgwhen the/reportoption is used with and without the/verbose
option is described in Section 3.5.

1.3 UsingGPPGParsers

Parsers constructed bygppg expose a simple interface to the user. Instances of the
parser may be created by calling any of the constructor methods defined in the user
code. The name of the parser class isParser, unless the default is overridden (see
Section 2.3). User code typically attaches a scanner and error handler object to the
parser instance (see Section 1.6). The scanner, in turn, will have been provided with
some input text to read from.

The parser instance is invoked by calling theParsemethod, inherited from an ab-
stract base class. The classShiftReduceParseris a generic abstract class with two type-
parameters: a semantic value typeTValueand a location text-span typeTSpan. The
user specification chooses appropriate type-arguments for the concrete parser class.

TheParsemethod cannot be overridden, and has the following signature —
public bool Parse() { ... }

This method returns false if the parse is unsuccessful, and true for a successful parse.
Note that the success or otherwise of the parse is distinct from the issue as to whether
errors were detected. False implies that the parse terminated abnormally.

In general the parser is expected to do more than just return true or false. In many
cases the parser will be expected to construct some kind of abstract syntax tree and/or
symbol tables as a side effect of a successful parse. When this is the case, the parser
result is normally attached to some accessible field of the parser instance from where
it may be retrieved by the invoking process.

1.4 Outputs

The parser generator reads a grammar specification input file and produces aC#output
file containing —

* an enumeration type declaring symbolic tokens

public enum Tokens {error=127, EOF=128, ... }

The ordinal sequence of the tokens in the enumeration will start above the or-
dinal numbers of any literal characters appearing in the grammar specification.
Be aware that the use of unicode escapes for character literals may push this
boundary very high.

* a type definition for the “semantic value” type specified in the grammar. In the
case of a “union” type,gppgwill emit —

1 OVERVIEW 6

public partial struct ValType{ ... }

The semantic value type is the type that is returned by the scanner in the in-
stance fieldyylval. This type argument thus corresponds to theYYSTYPEof tra-
ditional implementations ofYACC-like tools. The struct is partial if the marker
“%partial ” appears in the definitions part of the parser specification “*.y ” file.

* a definition for the class that implements the parser, as shown in Figure 1. The
parser class is partial if the marker “%partial ” appears in the definitions part of
the parser specification “*.y ” file. This class definition provides an instantiation
for the generic classShiftReduceParserwith the actual type argumentsValType
andLocType, inferred from the grammar specification, substituted for the type
parametersTValueandTSpanrespectively.

The generatedC# source file, as well as defining the above types, also contains the
parsing tables for the parser and the code for the user-specified semantic actions. The

Figure 1: Concrete parser class

public class Parser : ShiftReduceParser <ValType, LocType>
{

protected AbstractScanner <ValType, LocType> Scanner
{ get ; set ; }
...

}

parser implements a “bottom-upLALR(1)” shift-reduce algorithm, and relies for its
operation on the invariant code of the genericShiftReduceParserclass. This code may
be imported as a source file of the application, or accessed from the strongly named
assembly “ShiftReduceParser.dll”. Section 5 discusses various architectural options
for the parser runtime.

If the command line option “/defines” is used, or the input file contains the “%de-
fines” marker then an additional output file is created. This file will have the name
“basename.tokens” wherebasenameis the name of the input file, without a filename
extension. This file contains a list of all of the symbolic (that is,non-character-literal)
tokens, one per output line. The names are syntactically correct references to the un-
derlying enumeration constants.

1.5 Scanner Interface

Parser instances contain a protected property namedScanner. The parser expects this
field to be assigned a reference to a scanner that implements the class shown in Figure 2.
AbstractScanneris the abstract base class of the scanners. The base class provides the
API required by the runtime component ofgppg, the libraryShiftReduceParser.dll. Of
course scanners will usually implement other facilities that are required by the scanner
semantic actions. These actions may use the richerAPI that the concrete scanner class
supports, but the shift-reduce parsing engine itself needs only the subset defined in the
base class.

1 OVERVIEW 7

Figure 2: Scanner Interface ofGPPG

public abstract class AbstractScanner <TValue, TSpan>
where TSpan : IMerge <TSpan>

{
public TValue yylval;
public TSpan yylloc { get ; set ; }
public abstract int yylex();
public virtual void yyerror(string msg,

param object [] args) {}
}

User code of the parser may also access the richerAPI of the concrete scanner class
by casting the scanner reference from the abstract type to the concrete type.

The abstract scanner class is a generic class with two type parameters. The first of
these,TValueis the “SemanticValueType” of the tokens of the scanner. If the grammar
specification does not define a semantic value type (see section 2.3.5) then the type
defaults toint . From version 1.2 ofgppg the semantic value type can be anyCLR
type. Previous versions required a value-type.

The second generic type parameter,TSpan, is the location type that is used to track
source locations in the text being parsed. In almost all applications it is sufficient to
use the default location type,LexLocation, shown in Figure 4. Location-tracking is
discussed further in section 2.6.

The abstract base class defines two variables through which the scanner passes
semantic and location values to the parser. The first, the fieldyylval, is of whatever
“SemanticValueType” the parser defines. The second, the propertyyylloc, is of the
chosen location-type.

The first method,yylex, returns the ordinal number corresponding to the next token.
This is an abstract method, the actual scannermustsupply a method to override this.

The second method, the low-level error reporting routineyyerror, is called by the
parsing engine during error recovery. The default method in the base class is empty.
The scanner has the choice of overridingyyerroror not. If the scanner overridesyyerror
it may use that method to emit error messages. Alternatively the semantic actions of
the parser may explicitly generate error messages, possibly using the location tracking
facilities of the parser, and leaveyyerror empty. Error handling in the parser is treated
in more detail in section 4.

If gppgis used with the/gplexoption the parser file defines a wrapper classScan-
Basewhich instantiates the genericAbstractScanner, and several other features. Full
details of this and other convenience features of this option are given in thegplexdoc-
umentation.

1.6 Instantiating the Parser Object

The parser code generated by thegppgtool does not declare any constructor methods
at all. Furthermore, the generic base class declares a single constructor only.

2 INPUT GRAMMAR 8

protected ShiftReduceParser
(AbstractScanner <TValue, TSpan> scanner) {

this .scanner = scanner;
}

This constructor is thepreferredmethod for attaching a scanner object to the parser.
However, in the interests of compatibility with previous versions, a no-arg constructor
for the parser might passnull to the base class constructor, and then use the setter of
the parser’sScannerproperty to add the scanner reference later.

It is up to the user to define how the concrete parser object is to be created. Either
the parser specification must define one or more constructor methods for the parser
class, or constructors may be defined in aparse helperfile which contains more of the
partial parser class.

For a typical application the parser class will have other members that may con-
veniently be initialized in the constructor. For example, ingppgitself the parser class
defines a single constructor with the following header text —

internal Parser(
string filename,
Scanner scanner,
ErrorHandler handler) : base (scanner) { ... }

For this example the inheritance relations of theScannerclass are as follows.Scan-
ner is defined bygplex, and derives from theScanBaseclass thatgppgemits when it
is run with the/gplexoption. ScanBaseis a wrapper for theAbstractScannerclass,
instantiated with type argumentsValueTypeandLexSpan.

1.7 UsingGPPGParsers with Non-LEX Scanners

gppghas been successfully used with both hand-written scanners, and with scanners
produced by tools such asCOCO/Rthat are not at allLEX-like. In the case of newly
hand-written scanners the code may be written to conform to theAbstractScannerinter-
face. In the case of existing scanners, or scanners produced by other tools, it is usually
necessary to write adapter code to wrap the scannerAPI to conform to the expected
interface.

2 Input Grammar

The input grammar forgppg is based on the traditionalYACC language. There are
a number of unimplemented constructs in the current version, and a small number of
extensions for theC#programming environment.

The rules of the grammar are specified in terms ofterminal symbols. andnon-
terminal symbols. “Terminal” symbols are so named because they appear at theleaves
of derivation trees, thus terminating the substitution process. They may correspond to a
single input source sequence, such as a semicolon character ‘; ’, or may denote an un-
boundedlexical categorysuch as “identifier” in most programming language lexicons.
The terminal symbols correspond to the various lexemes recognized by the scanner.
When each lexeme is recognized the scanner passes the parser atokenand optionally
a semantic value and a location object. Tokens are integer values that correspond ei-
ther to members of a parser-defined enumeration, or are the ordinal values of single
characters. The single character tokens do not need to be declared in the parser spec-
ification, but the enumeration names must be declared. It is also possible to declare

2 INPUT GRAMMAR 9

a correspondence between a particular token-enumeration value and some fixed literal
string, thedisplay string. In such cases it is allowed to use the display string to denote
the terminal symbol in the grammar rules.

Non-terminal symbols denote thesyntactic categoriesof the phrase-structured gram-
mar. They are implicitly defined by their appearance in a production rule of the gram-
mar.

gppgperforms checks on the validity of the grammar that it is given. If a particular
symbol does not appear in a token declaration, and does not appear as the left-hand-side
of at least one production, then the grammar isnon-terminating. gppg issues a error
message naming the symbol that is involved. This is a fatal error, as parser production
fails under such circumstances.

As well as the terminating test,gppg checks that every non-terminal symbol is
reachable from the start symbol.Unreachable symbolsattract a warning, but their
presence is not fatal to parser production.

Errors of both type most commonly arise because of typographical errors in the
grammar. Remember that symbol names are case sensitive ingppg.

2.1 Input Grammar Structure

The overall structure of the grammar is described by the following production rules

Grammar
: DefinitionSequenceopt “%%” RulesSection UserSectionopt
;

DefinitionSequence
: DefinitionSequenceopt Declaration
| DefinitionSequenceopt “%{” CodeBlock “%}”
;

UserSection
: “%%” CodeBlock
;

All of the tokens begining with the “percent” character must occur alone at the start of
a line.CodeBlockis any fragment of well formedC#code.

2.2 Declarations

gppg implements some of the declarations familiar from other parser generators, as
well as a number of extensions that specifically have to do with the.NETplatform.

The following symbols are recognized, with the standard meanings. Further details
are summarized in Appendix A, Section 8.1 —

%union // usual meaning, but see section 2.3.5
%prec // usual meaning, see section 2.4.2
%token // usual meaning
%type // usual meaning
%nonassoc // usual meaning
%left // usual meaning
%right // usual meaning
%start // usual meaning
%locations // usual meaning

The following are extensions to the syntax, or have modified semantics —

2 INPUT GRAMMAR 10

%output // sets the output filepath
%definitions // creates a token declaration file
%namespace // declares the namespace for the parser
%parsertype // names the parser class within namespace
%scanbasetype // names the scanner base class
%tokentype // names the token enumeration
%visibility // declares the visibility of the parser class
%YYSTYPE // names the semantic value type
%YYLTYPE // names the location value type
%partial // declares the parser class to be partial
%using // inserts a “using” clause in parser prolog

All of these extensions to the declaration syntax are described in Section 2.3.

2.2.1 Declaring Tokens

The%token , %left , %right and%nonassoc keywords may all be used to declare
token names. Although the tokens have different semantics according to how they
are declared, the syntax of all of these declaration forms are the same. Here are two
examples.

Declaration : ... // Productions for other declarations
| "%left" Kindopt TokenList
| "%token" Kindopt TokenList
;

Kind
: ‘<’ ident ‘>’
;

TokenList
: TokenDecl
| TokenList ‘ ,’opt TokenDecl
;

TokenDecl
: litchar
| ident numberopt litstringopt
;

In this syntaxident, number, litcharand litstring are lexical categories recognized by
thegppg-scanner.

The optionalKind clause declares that the semantic values of the following token-
list elements are accessed by using the nominated identifier as a field-selector on the
yylvalvariable.

Elements of aTokenListmay be either whitespace-separated or comma-separated.
They consist of either a literal character (enclosed in single quotes) or an identifier. Lit-
eral character tokens do notneedto be declared, unless they require a kind declaration.

In the case of named tokens the identifier must be a legalC# identifier, and may be
followed by an optional number and optional literal string. The optional number is for
compatability with other tools, but the value is ignored, with a warning to the user1.
The literal string associates adisplay stringwith the token. The display string is used
in all diagnostic messages from the generated parser. This is particularly helpful so
that, for example, a user error message could say “expected"=>" symbol” instead of
using whatever cryptic identifier name that symbol has in theTokensenumeration.

1Future versions may honor the numeric assignment.

2 INPUT GRAMMAR 11

Both defining and used occurrences of literal character tokens may use the character
that they denote, or any of the “usual”, octal, hexadecimal or unicode escape forms that
denote the same value. All such occurrences are canonicalized so that, for example, the
same lexical value may be referred to as ‘\n ’, ‘ \012 ’, ‘ \x0a ’, or even ‘\u000a ’.

2.2.2 Token Precedence

For expression grammars there are two ways of controlling the precedence of operators,
so as to implement the desired grouping of sub-expressions. One way is to invent a
hierarchy of syntactic categories (expression, simple-expression, term, factor, primary
and so on) to control the order in which derivation steps are invoked. This is the method
that must be used forpredictiveor top-downparsers.

The “multiple sub-expression categories” method works perfectly well for bottom
up parsers such as those generated bygppg, but it is traditional to use the second
method. In this case, the application of a particular production rule is determined by
attributes of the lookahead token.

Tokens may be declared as havingleft or right associativity, or being non-associative.
Furthermore, the relative precedence of tokens is determined by the order in which they
are declared. Tokens declared in the same list have the same precedence, while those
declared in later lists have higher precedence than those on all earlier lists.

There is a special mechanism that can be used for those unusual cases of tokens that
have more than one precedence. The familiar example of this occurs for the “minus”
sign of conventional arithmetic grammars, where the same token may denote subtrac-
tion (which has low precedence), and unary negation (which has very high precedence).
The special mechanism is described in Section 2.4.2.

2.2.3 Declaring Non-Terminal Symbol Types

Just as different tokens may pass different semantic values to the parser, so the recog-
nition of different non-terminals may create different semantic values on the parser’s
semantic value stack.

Semantic actions in the rules section can push a value onto the semantic value stack
by using the symbolic code$$ = Expression. If the semantic value type is some
named aggregate type, then the assignment will need to target one of the members of
that type.

The code to achieve this is automatically generated bygppg, after the following
declaration —

Declaration : ... // Productions for other declarations
| "%type" Kind NonTerminalList
;

Kind
: ‘<’ ident ‘>’
;

The identifier in theKind clause is the name of the member of the aggregate which
will hold the semantic value for specified symbols. Similarly, if a semantic value is
referenced using the symbolic name$N, whereN is an index, then the appropriate
member selection code will automatically be generated bygppg.

TheNonTerminalListis a list of non-terminal symbol names. Elements of the list
may be either comma-separated or whitespace-separated.

2 INPUT GRAMMAR 12

2.3 Extensions to the Declaration Grammar

2.3.1 Declaring an Output Filepath

The command —

%output= filepath

redirectsgppgoutput to the nominated file. In the absence of this declaration the output
is sent to standard output.

It is necessary forgppg to be able to send its output to an arbitrarily named file,
including filenames that cannot be expressed in an 8-bit text file. The scanner accepts
three different forms for the filepath —

* An ordinary unquoted filename which does not contain any whitespace or es-
caped characters.

* A normal literal string usingC# conventions. This string may include white-
space, and any of the usual escape character forms.

* A verbatim literal string using theC# “@"..." ” convention. This form is par-
ticularly convenient if the path contains backslash escapes as path-component
separators.

For the last two forms the filepath string expands any escape characters before use.
However,gppgdoes not check the legality of the resulting filepath string. Thus illegal
filenames will only be detected when use is attempted.

2.3.2 Creating a Token Definitions File

The command —

%definitions

creates a “tokens” file with a list of the symbolic tokens, one per line. The names are
written in fully qualified form, with the enumeration typename prepended. This file is
not used by the parser or scanner, but is useful for other tools.

2.3.3 Choosing the Namespace —
%namespace NameSpaceName

The whole of the output ofgppgwill be enclosed in a namespace declaration with the
chosen name. The name is used verbatim, and may be a dotted name.

2.3.4 Naming Types

The name and visibility of the parser class may be defined by the “%parsertype ” and
“%visibility ” constructs. In the absence of thesegppgacts as though it had seen
the declarations —

%parsertype Parser
%visibility public

Similarly, the name of the token enumeration may be set by the “%tokentype ” dec-
laration. In the absence of such a declarationgppg acts as though it had seen the
declaration —

%tokentype Tokens

2 INPUT GRAMMAR 13

When run with the/gplexoption,gppgdefines a scanner base class instantiated from the
genericAbstractScannerclass. The “%scanbasetype ” declaration allows the name
of the base type to be set. In the absence of of such a declarationgppgacts as though
it had seen the declaration —

%scanbasetype ScanBase

Note carefully that names of the token type and the scanner base class must be agreed
between the parser and scanner specifications. The command syntax for this is the
same in the two tools.

The visibility of the token type is the same as that declared for the parser class.
Similarly, the visibility of theScanBaseabstract class thatgppgdefines when given the
/gplexoption is the same as that of the parser class.

2.3.5 Defining a Semantic Value Type

According to tradition, the semantic value type expected from the scanner,YYSTYPE,
is defined by a “union ” construct in the grammar specification file. Of course,C#does
not have a union type construct, achieving roughly the same intent by subclassing.

Nevertheless,gppgrecognizes the “%union ” construct, emitting a corresponding
struct definition to the output file. The structure will have a field corresponding to
every member of the “union”, with members selected using exactly the expected “dot”
notation. The effect is to substitute aproducttype for the usualunion, with the loss of
some storage efficiency.

The type declared by the union construct may be an arbitrary type. For example,
the declaration ingppg’s own parser specification is

%union { public int iVal;
public List <string > stringList;
public List <TokenInfo > tokenList;
public TokenInfo tokenInfo;
public Production prod;
public ActionProxy proxy;

}
Note the use of types fromSystem.Collections.Generichere.

The default name for the “union” type, in the absence of an explicit declaration
will be “ValueType”2. For another example of use of the “%union ” construct see Sec-
tion 7.2.

If the grammar does not declare a “union” type, but does declare a semantic value
type name, then the semantic value stack of the parser will expect to hold values of the
named type. Thus in new grammars it is probably better todefinea semantic value type
in theC#, and declare the type’s name togppg, using the%YYSTYPEdeclaration, thus
avoiding the slightly misleading union word. In some applications it is convenient to
define the semantic value type to be the abstract base class of an abstract syntax tree
construct. This allows the semantic actions of the parser conveniently to build theAST.

2.3.6 Choosing the Semantic Value Type Name —
%YYSTYPEValueTypeName
%YYSTYPETypeConstructor

This declaration defines the type that will be used as the semantic value type. “%value-

type ” is a deprecated synonym for the%YYSTYPEmarker. The first form simply de-
2That is, the type name will be “MyNamespace.ValueType ” which should not be confused with the

super type of every value typeSystem.ValueType .

2 INPUT GRAMMAR 14

clares thenameof the type. If there is a%union declaration, then the name should be
a simple identifier, and will be the name given to the struct that implements the “union”.
If there is no%union declaration, then the name may be a qualified (“dotted”) name
that references a named type defined elsewhere.

The second form of the declaration allows an arbitrary type constructor to define
the semantic values. Using this form is the only way to declare a semantic value type
that is an array type, for example, since inC#array types do not have identifier names.
The type-constructor form cannot be used if there is a%union declaration.

If a grammar contains neither a valuetype declarationnor a “union” declaration,
then the semantic value type will beint .

2.3.7 Choosing the Location Type Name —
%YYLTYPELocationTypeName

This marker overrides the default location type name,QUT.Gppg.LexLocation. The
location type name may be a dotted name. The default type is sufficient for most
applications, but when additional functionality is required it is possible to define a new
type, and declare its name with this marker. Location tracking is discussed in detail in
Section 2.6

2.3.8 Partial Types

The “%partial ” marker, at the beginning of a line in the .y file, declares that the
generated parser class will be a partial class. This is a convenient mechanism to use, so
that the bulk of the (non semantic action) code required by the parser may be defined
in a separate file. By defaultgppgproduces a complete class.

In the case that the grammar declares the semantic value type using the “%union ”
mechanism the generated parser file will declare a struct that is alsopartial.

The use of this partial marker is a very great convenience, allowing the grammar file
to hold little but the grammar syntax, with all of the other code appearing in separate
files. This is also a big gain with the definition of the semantic value type. Typically
this type contains data and many instance methods for manipulation of the type. With-
out the partial marker all of these method bodies would need to be defined inside the
dummy “%union ” construct in the .y file.

2.3.9 Using Declarations —
%using UsingName;

The given name is inserted into the output file, immediately before the namespace
marker. There may be as many of these directives as is necessary, and the names may
be either simple or dotted names3. The following namespaces are included by default,
and need not be explicitly imported —

* System

* System.Text

* System.Globalization

3 The semicolon following the using name is new in version 1.3.5, and is the preferred usage. This follows
the usage ingplexand inC#, where using declarations need a semicolon, and namespace declarations do not.
The form without the semicolon is deprecated, but still recognized.

2 INPUT GRAMMAR 15

* System.Collections.Generic

* QUT.Gppg; // To access ShiftReduceParser

2.3.10 Colorizing Scanners andmaxParseToken

The scanners produced bygplexrecognize a distinguished value of theTokensenumer-
ation named “maxParseToken”. If this value is defined in thegppg-input “%token ”
specification thenyylexwill only return values less than this constant.

This facility is used in colorizing scanners when the scanner has two callers: the
token colorizer, which is informed ofall tokens, and the parser which may choose to
ignore such things as comments, line endings and so on.

If for some reason you wish to define token values that are not meaningful to
thegppg-grammar, then definemaxParseTokenand place all the token values that the
parser will ignore after this value.

Scanners produced by current versions ofgplexuse runtime reflection to check if
the special value of the enumeration is defined. If the value is not defined, it is set to
Int32.MaxValue. It is always safe to leave the special value out, if it is not needed.

2.3.11 Colorizing Scanners andManaged Babel

TheVisual Studio SDKincludes tools to allow for easy contruction of language services
based on theManaged Package Framework(MPF). TheSDK ships with the Managed
Package Parser Generator (mppg) tool, but it is also possible to usegppgto construct a
compatible parser.

MPF-compatible parsers do not require any changes to the grammar specification,
other than possibly defining amaxParseTokenenumeration value. The changes are all
in the scanner base class definition thatgppgemits when run with the /gplexoption.

If gppg is run with the /babeloption (which implies the /gplexoption), then the
emitted parser source file will define theIColorScaninterface. Some additional fea-
tures of the scanner base class,ScanBase, are also emitted. These allow the scanners
to operate incrementally by providing end-of-line scanner state to be persisted.

2.4 Production Rules

The production rules for each non-terminal consist of the symbol name, starting on a
new line in the first column, followed by a colon character, and zero or more right-
hand-sides. Right-hand-sides are separated by the vertical bar character ‘| ’, and the
sequence is terminated by a semicolon.

Rule
: NonTermSymbol ‘ : ’ RhsSequenceopt ‘ ; ’
;

RhsSequence
: RightHandSide
| RhsSequence‘ | ’ RightHandSide
;

With the exception of a few possible special cases discussed later, a production
right-hand-side consists of a sequence of zero or more symbols, followed by an optional
semantic action. The symbols may be terminal or non-terminal symbols, including

2 INPUT GRAMMAR 16

those terminal symbols that are denoted by a character literal. At runtime in thegppg-
generated parser, when a token sequence corresponding to that production right-hand-
side has been recognized, the semantic action, if there is one, is executed. The special
case of a production right-hand-side with zero symbols is called anempty production
and derives exactly one string, theemptystring “”. Reduction by an empty production
is also called anerasuresince the non-terminal symbol disappears, and is replaced by
nothing.

All of the productions for a given non-terminal symbol may occur together in the
specification, with separate right-hand-sides separated by the vertical bar. Alterna-
tively, the productions for a symbol may be spread throughout the grammar in multiple
production groups each beginning with the non-terminal name.

2.4.1 Semantic Action Syntax

Semantic actions consist of arbitraryC# statements enclosed in braces. The semantic
actions are not checked or interpreted in any way bygppg4. The semantic action ends
when the right brace is located that matches the left brace that began the action. Mal-
formed actions that do not have matching braces lead to syntactic errors from which it
is difficult for thegppgparser to recover.

As well as regularC# code, the semantic actions may contain a number of special
symbols that refer to attributes of the rule just matched. A summary of these special
symbols is given in Section 8.2, and their use is discussed in Section 2.5.

2.4.2 Controlling Precedence

The ordinary rules of relative precedence, and associativity for operator-like symbols
are sufficient for grammars where such symbols have an unique precedence. However,
for those rare cases where symbols have different precedence in differing contexts a
special feature ofYACC-like grammars must be used.

As an example, we consider a simplified version of the expression grammer in the
Calc example of Section 7.1. The simplified version has only three operators, and the
following relevant productions.

expr
: ‘(’ expr ‘)’
| ‘ - ’ expr %prec UMINUS
| expr ‘ - ’ expr
| expr ‘+’ expr
| expr ‘* ’ expr
;

The token declarations for this grammar give ‘- ’ and ‘+’ a lower precedence than
‘* ’, and give the highest priority to the dummy “token”UMINUS. All of these tokens
are declared as having “%left ” associativity. The second right-hand-side has spe-
cial markers that say that that production should have the precedence of theUMINUS
dummy token.

If we generate a parser from this grammar, and another from the same grammar
but without the precedence marker we may compare them. Using the/report option of
gppgand examining the generated html files shows that only one state of the parser is
different between the two versions. The “kernel items” for that state are identical —

4Except of course for recognizing literal strings and comments, so as to safeguard the matching of left
and right braces.

2 INPUT GRAMMAR 17

Kernel Items
‘ - ’ expr •
expr • ‘ - ’ expr
expr • ‘+’ expr
expr • ‘* ’ expr

In words, the kernel items show the position within the recognition of various right-
hand-sides that cause the automaton to be in this particular state. The “dot” marks the
current position. Clearly we are either about to reduce (that is, finalize) recognition of
the first production (since the dot is at the end), or we are in the middle of one of the
other productions and about to shift a binary operator.

In situations such as this, where there are both shift and reduce possibilitiesgppg
determines, for each possible lookahead token, whether the generated parser will shift
the next token or reduce a completed production. It makes this decision by comparing
the precedence of the completed right-hand-side with the precedence of each possible
lookahead symbol. Since in this case we have forced the second production to have the
highest possible priority, we will always reduce by that production when in this state.

In the absence of the “%prec ” marker the situation is rather different. If the looka-
head is ‘* ’ we shift the operator and continue parsing, since ‘* ’ has a higher precedence
than ‘- ’. For all other lookahead symbols, the precedences of the lookahead and the
production are equal, and the parser reduces, since the ‘- ’ operator is declared to be
left-associative.

This is but one example, so we must generalize this by stating the general rules
by which precedence is determined. When both shift and reduction rules apply to a
state the precedence of theproductionand the precedence of thelookahead tokenare
compared. Here are the rules for determining precedence —

* The precedence of atokenis determined by the position of the declaration group
in which it occurs. Groups declared later in the definitions section have higher
precedence (see also Section 2.2.2).

* The precedence of aproductionis that given by the “%prec TokenName” dec-
laration, if there is one.

* Otherwise, the precedence of a production is that of the rightmost terminal sym-
bol in the right-hand-side, if there are any terminal symbols in the right-hand-
side.

* Otherwise the production has zero precedence.

And here are the rules for comparing precedence —

* If the precedence of the production is higher than the precedence of the looka-
head token, then reduce.

* Otherwise, if the precedence of the lookahead token is higher than the prece-
dence of the production, then shift.

* If the precedences are equal and the associativity of the lookahead token isleft
then reduce.

* If the precedences are equal and the associativity of the lookahead token isright
then shift.

2 INPUT GRAMMAR 18

It is important to note that these rules are applied during the generation of the parsing
tables, and not at runtime for the generated parser.

Finally, here are the rules thatgppguses for deciding when to issue conflict diag-
nostics during the generation of the parsing tables.

* If an automaton state has two or more productions that can be reduced, that is,
two or more items with the “dot” at the end, then issue a reduce/reduce conflict
warning.

* If an automaton state has a reduction and also possible shift actions, then the
conflicts are resolved as detailed above. However, if the conflict is resolved
in favor of shifting because the production has zero precedence, then issue a a
shift/reduce conflict warning.

2.4.3 Mid-Rule Actions

It is uncommon, but nevertheless legal, to place semantic actions in the middle, or even
the beginning of production rules. In effect, the parser generator performs a transfor-
mation of the production as described below.

Suppose that we have a production —
A: B { MRA} C ;

whereMRA is some mid-rule action.
This production is treated as if transformed by replacing the mid-rule action by a

new, anonymous non-terminal symbolAnon, say. The new symbol has a single, empty
production, and takes the code of the mid-rule action as a normal, end-of-rule action.

A : B Anon C ;
Anon : /* empty */ { MRA} ;

The use of mid-rule actions sometimes leads to parser conflicts that would not occur
without the action. This may be understood by considering the example above. Con-
sider two productions —

A: B C ;
A: B D ;

We shall assume that the non-terminal symbolsC andD have overlapping first terminal
symbol sets. To be specific, let us assume that eitherC or D can start with terminal
symbolx.

The fact that these two non-terminals have overlapping first sets does not cause a
conflict between the two productions. The parser does not have to choose between the
two productions until it has seenall of the symbols that make up a completeC or a
completeD.

Suppose however that we now introduce a mid-rule action in the first of these pro-
ductions. After the transformation described above, we consider the state with the
following two items —

Kernel Items
A • Anon C
A • D

Now here is the problem: a lookahead token ofx in this state will be consistent with
the reductionAnon→empty, but is also consistent with shifting the first token of an
expectedD symbol.

Thus, introducing the mid-rule action can cause a shift/reduce conflict that was not
there before. In effect, putting in a mid-rule action sometimes forces the parser to

2 INPUT GRAMMAR 19

choose between two productions before it has seen enough of the input to make that
decision.

If introducing a mid-rule action causes a damaging shift/reduce conflict the correct
strategy is to take the action out. The idea is to perform the actionafter the whole
production has been recognized. In order to do this it may be necessary to store away
some additional information in the semantic values of the intermediate symbols to use
in the later action.

A final, important point to remember is that if a mid-rule action is introduced the
counting of symbols for the$N and@N terms in semantic actions must count one for
each mid-term action. This is to account for the anonymous non-terminal that stands
proxy for the action in the transformed production.

2.4.4 Right-Hand-Side Syntax

We are now in a position to reveal the complete syntax of production right-hand-sides.
This looks a little silly, since it acknowledges that a production right-hand-side may
have an action at either end, and between any two symbols. Furthermore, an optional
precedence-setting clause may occur anywhere preceding a point at which an action
may be placed.

2.5 Semantic Actions

Commonly, the semantic action that is invoked at a reduction will perform some kind
of computation on the semantic values of the symbols on the right of the selected
production. The destination of the computed semantic value is denoted “$$”, while
the previously computed semantic values of the first, second and subsequent symbols
on the right-hand-side are denoted$1 , $2 , ... $n, wheren is any decimal number less
than or equal to the length of the right-hand-side of the chosen production. The index
n undergoes an index bounds check at parser construction time.

In case the semantic action needs to refer to a particular component of a semantic
value of aggregate type, the notation$<member>N refers to the named member of the
aggregate.

2.5.1 Default Semantic Action

Whenever a reduction is performed for a production that has no user-supplied semantic
action, a default semantic action is performed.

For production right-hand-sides of zero length, that is, for anerasure, the default
semantic value of the production is a default value of theTValuetype. If the semantic
value type is a reference type, the value will benull . For scalar types the value will
be “0”. For structured value types the default value is the value created by the no-arg
constructor. For production right-hand-sides of all non-zero lengths, the default action
is equivalent to “$$=$1 ”.

2.6 Location Tracking

The second generic type parameter of the scanner interface in figure 2,TSpan, is the
location type. Instances of the location type typcially contain information that mark the
start and end of the relevant phrase in the input text, that is, the type is a representation

2 INPUT GRAMMAR 20

of a text span. The actual type that is substituted for theTSpanparameter must imple-
ment theIMergeinterface shown in Figure 3. The location type supplies a method that

Figure 3: Location types must implementIMerge

public interface IMerge <YYLTYPE> {
YYLTYPE Merge(YYLTYPE last);

}

produces a value that spans locations from the start of the “this” value to the end of the
“ last” argument. The parser, during every reduction, calls theMergemethod to create
a location object representing the complete production right-hand-side phrase.

2.6.1 Location Actions

The semantic actions of the parser may refer to the location values as well as to the
semantic values. This is most commonly done so as to pass location information to an
error handler.

In a production, the location value of the left-hand-side symbol is referred to as
@$, while the location values of the first, second and subsequent symbols on the right-
hand-side are denoted@1, @2, ... @n, wheren is any decimal number less than or equal
to the length of the right-hand-side of the chosen production.

The default action at every reduction is equivalent to the code –

@$ = @1.Merge(@N)

whereN is the number of symbols in the production right-hand-side. The default action
is carried outbeforeany user-specified semantic action. Thus it is possible for a user
action to override the default location-merging action by explicitly attaching a different
location object to “@$”.

If a scanner does not contain code to generate location objects, then the scanner’s
yylloc field will always be null. This does not cause exceptions in the default location
action, as the code is guarded by a null reference test. Location processing may thus
be safely ignored in those cases that it is not needed.

2.6.2 Default Location Type

Parser specifications may declare the name of a type that is to be used as the location
type. This type must implement theIMerge interface. In the event that no such dec-
laration is made, the default location tracking type is theLexLocationtype shown in
Figure 4. This type implements a simple text-span representation.

2.6.3 Supplying a Different Location Type

. Sometimes if may be necessary to use a different location type. This is the case with
gppgitself, which needs to track not only line and column numbers but also file-buffer
positions.gppguses these text-span values to access verbatim representations of user
semantic actions.

To override the default location type, the parser specification needs to include the
command —

2 INPUT GRAMMAR 21

Figure 4: Default location-information class

public class LexLocation : IMerge <LexLocation >
{

public int startLine; // Start line
public int startColumn; // Start column
public int endLine; // End line
public int endColumn; // End column
public LexLocation() {};

public LexLocation(int sl; int sc; int el; int ec) {
startLine = sl; startColumn = sc;
endLine = el; endColumn = ec;

}

public LexLocation Merge(Lexlocation last) {
return new LexLocation (

startLine,startColumn,last.endLine,last.endColumn);
}

}

%YYLTYPETypeIdent

whereTypeIdentis the simple name of the desired type5. The type must implement the
IMerge interface, but may provide any additional methods that are required.

In the case of theLexSpantype ofgppgthe type contains the same line and column
fields asLexLocation. These are used by the error reporting in the usual way. The
new type has additional fields for the start and end file position pointers into the input
buffer, and a reference to the buffer itself. The additional methods of the type extract
strings from the buffer corresponding to a given location span, and write out text spans
from the buffer to the output streams.

2.6.4 Special Behavior for Empty Productions

Special care must be taken when generating location information for productions with
empty right hand sides The issue is not so much with the empty production, but when
a location span from such an empty production is used further up a derivation tree.

Consider the productionA → BCD. The default location processing action when
this production is reduced is to create a location span that begins at the start of the
B phrase, and finishes at the end of theD phrase. Now, suppose thatB andD are
nullablesymbols, and each has been produced by reduction by an empty production. A
moment’s consideration will show that the correct behavior is produced if the location
span for each empty productionbeginswith the start of the lookahead token, andends
with the finish of the last token shifted. Such a location value makes no sense on it
own, it has negative length for example, but merges correctly with other spans. The
1.0.1 version ofgppguses this strategy to deal with location information for empty
productions6.

5This type identifier may be a qualified, “dotted” name.
6There are other ways of getting correct behavior, such as leaving the location valuenull and using

3 ERRORS, DIAGNOSTICS AND WARNINGS 22

3 Errors, Diagnostics and Warnings

Whengppgprocesses an input grammar it checks for a number of different conditions
that might make the grammar invalid. If the grammar is well-formed it proceeds to
construct an automaton to recognize the language specified by the grammar. If the
grammar has conflict statesgppgreports this.

In the case that there are errors or conflicts in the grammargppgcan give several
levels of diagnostic help to the user. This section describes all of these errors, warnings
and diagnostic messages.

3.1 Error Messages

gppg error messages From version 1.3, the parser generator uses agppg-generated
parser, and attempts error recovery from syntax errors. Error messages are buffered,
and a listing file is produced if any errors or warnings are emitted, or if the/listing
command line option is in force. In the listing, the location of the error is highlighted.
In some cases the error message includes a variable text indicating the erroneous token
or the text that was expected. In the following the variable text is denoted<...>.

Bad format for decimal number —
Thegppgscanner has failed to compute the value of the apparent decimal num-
ber.

Bad separator character in list —
Lists may either be comma-separated or whitespace-separated.

Code block has unbalanced braces ‘{’, ‘ }’ —
A code block has been terminated (byEOF or “%}”) before finding a balancing
number of right braces.

Duplicate definition of Semantic Value Type name —
There are duplicate definitions of the semantic value type name. Both occur-
rences are flagged.

Invalid string escape<...> —
The escape sequence in the placeholder in invalid in this literal string.

Keyword “ %}” is out of place here —
This keyword is invalid in this context.

Keyword must start in column-0 —
All of the %-keywords must be left justified.

Literal string terminated by EOL —
The literal string reached end of line without finding a terminating quote charac-
ter. Linebreaks are permitted in verbatim literal strings.

NonTerminal symbol “<...>” has no productions —
This is a fatal error. Carefully check to see if a rule has been left out, or whether
a symbol has simply been misspelled.

conditional code for the default action that searches up and down the location stack to find non-null values
to operate on.

3 ERRORS, DIAGNOSTICS AND WARNINGS 23

Only whitespace is permitted here —
Many of the formatting keywords must occur alone on a line and can only be
followed by whitespace or comment.

Premature termination of code block —
A %%separator has terminated a code block while still inside one or more nested
braces.

Semantic action index is out of bounds —
The index into the production right-hand-side is out of bounds. Indices start
from 1, and cannot exceed the number of symbols in the rule, counting mid-rule
actions as an additional symbol.

Syntax error, unexpected<...>, expecting<...> —
This is the general,ShiftReduceParser-generated syntax error message. The sec-
ond place holder is a list of the expected lookahead symbols at the error site.

Source file<...> not found —
The specified source file was not found.

There are<...> non-terminating NonTerminalSymbols{<...>} —
The second place-holder lists the non-terminating non-terminal symbols.

This character is invalid in this context —
In the current scanner state, this character does not form part of any legal token.

This name already defined as a terminal symbol—
A duplicate definition of this terminal symbol has been declared.

Unknown %keyword in this context —
The selected keyword is either unknown, or is invalid in this context.

Unknown special marker in semantic action —
This symbolic marker in the semantic action is unknown.

Unterminated comment starts here —
The input file ended while inside a comment. The text span in the error message
is the start of the unterminated comment.

With %union, %YYSTYPEcan only be a simple name —
If the specification defines a “union” type, then any declaration of%YYSTYPE
can only give a simple name to the type. Without the union declaration%YYSTYPE
can define an arbitrary type-constructor, including dotted names, arrays, instan-
tiated generic types and so on.

3.1.1 Non-Terminating Diagnostics

After the grammar has been parsedgppgchecks that every non-terminal symbol of the
grammar isreachable, and that there is at least one production for each non-terminal.
There is a separate check that every non-terminal isterminating.

A non-terminal symbol is reachable if it is the goal symbol, or if it occurs on the
right-hand-side of a production with a reachable left-hand-side. If a non-terminal sym-
bol is unreachable this means that there is no sequence of derivations starting from the
goal symbol that produces a sentential form containing that symbol.

3 ERRORS, DIAGNOSTICS AND WARNINGS 24

A non-terminal symbols is non-terminating if there is no sequence of productions
that starts from the given symbol and derives a sequence of terminal symbols.

If a grammar has an unreachable symbol a warning is issued, butgppgcan continue.
However if a grammar contains a reachable symbol with no productions, or a non-
terminating non-terminal then the error is fatal.

When a grammar symbol is unreachable it is almost always a simple typograph-
ical error in the input grammar. Often a whole sub-grammar may become unreach-
able because a single production has been omitted from the input. Similarly, when a
non-terminal symbol is mis-spelled the resulting grammar will often have both an un-
reachable non-terminalanda non-terminal with no produtions. This is often the result
of different occurrences of what was meant to be the same symbol being spelled with
different case characters.

3.2 Warning Messages

gppg warning messages If warnings are issued, but there are no errors detected, then
an automaton is created. The user should note these warnings however, since some of
them indicate possible errors in the grammar.

%locations is the default in gppg —
This keyword is included for compatability, but is unnecessary, as it is the default
for gppg.

Highest char literal token <...> is very large —
The use of unicode escapes for literal character tokens is permitted, but the use
of characters with high codepoints pushes the start of the token enumeration up
to unusually high values.

Mid-rule %prec has no effect —
gppgallows a precedence marker to be attached to any action, including those
that occur mid-rule. However, such a mid-rule precedence marker has no effect
since mid-rule actions match a notional empty string, and are executed for all
possible lookahead symbols.

NonTerminal symbol “<...>” is unreachable —
An unreachable NonTerminal is not fatal to parser generation, but usually indi-
cates an error, or at least misunderstanding, in the specification file.

Optional numeric code ignored in this version —
Optional numeric values for tokens are allowed, for compatability with other
tools. However, the values are ignored.

Terminating <...> fixes the following NonTerminal set<...> —
The second placeholder is a list of the non-terminating symbols that are fixed by
creating a terminating production for the NonTerminal in the first placeholder
position. This is a useful diagnostic in cases where a single missing production
triggers a whole cascade of non-termination of dependent NonTerminals.

The following <...> symbols form a non-terminating cycle<...> —
The second placeholder is a list of the non-terminating symbols in the depen-
dency cycle.

3 ERRORS, DIAGNOSTICS AND WARNINGS 25

3.3 Non-Terminating Grammars

A grammar is non-terminating if it has one or more non-terminating symbols. This
may occur for a number of reasons. Some of these are simple typographical errors in
the input grammar. Figure 5 is a typical example. This specification has two errors

Figure 5: Grammar With Errors
%token blip skip
%%
Goal : ListOpt | skip ;
ListOpt : Element ListOpt ;
Element : Blah ;
Blah : ’(’ Element ’)’ | Blip ;

in it. The terminal symbol “blip” is mis-spelled on the final line, and theListOptnon-
terminal seems from its name to be intended to be an optional grammatical element,
but has no nullable production. When run throughgppg the following diagnostic is
produced –

There are 4 non-terminating NonTerminal Symbols{ListOpt, Element, Blah, Blip}
The following 2 symbols form a non-terminating cycle{Blah, Element}
TerminatingBlahfixes the following size-2 NonTerminal set{Element, Blah}
TerminatingElementfixes the following size-2 NonTerminal set{Element, Blah}
TerminatingBlip fixes the following size-3 NonTerminal set{Element, Blah, Blip}
FATAL: NonTerminal symbol “Blip” has no productions

gppganalyses the dependencies between the non-terminating symbols, and looks for
leaf symbols in the dependency graph. It reports any instances where modifying the
grammar to terminate a single symbol would fix multiple symbols.

In this example the diagnostics show that there is a circular dependency with the
symbolsElementandBlah. Making either of these terminating will fix the other sym-
bol as well. However, the diagnostic also shows that “Blip” has no productions, and
further, if fixed would fixElementandBlah as well. Fixing symbols with no produc-
tions is always the first step in cases like this.

After the final production is changed to —

Blah : ’(’ Element ’)’ | blip ;

thegppgdiagnostic then reads —

There are 1 non-terminating NonTerminal Symbols{ListOpt}
TerminatingListOptfixes the following size-1 NonTerminal set{ListOpt}
Unexpected Error: Non-terminating grammar

Now ListOptalone is non-terminating, and changing the productions of the other sym-
bols will not help. It is not difficult to see that a symbol with one production cannot
recursively depend on itself. If the apparently intended null production is added to the
symbol —

ListOpt : /* empty */ | Element ListOpt ;

Then the grammar is well-formed and a parser is created.

3 ERRORS, DIAGNOSTICS AND WARNINGS 26

3.4 Parser Conflict Messages

gppg conflict messages By defaultgppgsends a brief message to the error stream noting
any shift/reduce or reduce/reduce errors detected during parser construction. More
detailed messages are written to the error stream if the /verbosecommand line option
is used. Even more detailed information is generated in the case that the /conflicts
command line option is used. In that case the information is written to a file with the
name derived from the input file name, but with filename extension “.conflicts ”.

3.4.1 Reduce/Reduce Conflicts

If a reduce/reduce conflict is detected, the conflicts file will contain information similar
to that in figure 6. In this example there are two productions both of which can be

Figure 6: Reduce/Reduce Conflict Information

Reduce/Reduce conflict on symbol "error",
parser will reduce production 51

Reduce 51: TheRules -> RuleList
Reduce 64: ListInit -> /* empty */

reduced when the lookahead symbol is the error token. In such cases the parser will
always choose the lower numbered production. Reduce/Reduce conflicts are generally
a more serious matter than shift/reduce conflicts, so any instances of these need to
be considered carefully. In this particular example, the conflict only affects the error-
recovery behavior of the parser.

3.4.2 Shift/Reduce Conflicts

Shift/Reduce conflicts tend to be more common, and are often but not always benign.
The conflicts file for a typical case will contain information similar to that in figure 7.
In this example, with a current symbol of “rCond ”, the reduce action is to accept

Figure 7: Shift/Reduce Conflict Information

Shift/Reduce conflict on symbol "rCond",
parser will shift

Reduce 29: NameList -> error
Shift "rCond": State-87 -> State-88

Items for From-state for State 87
67 StartCondition: lCond error . rCond
29 NameList: error .

-lookahead: [rCond,]
Items for Next-state for State 88

67 StartCondition: lCond error rCond .
-lookahead: [pattern,]

production 29. The alternative, shift action is to shift the token and move from state 87

3 ERRORS, DIAGNOSTICS AND WARNINGS 27

to state 88. The current state, 87, has two “items” in its kernel set. The first item is
production 67, after shifting an error, and expecting to next see therCondsymbol. The
current position in the recognition of the production right-hand-side is marked by the
dot. The second item is production 29, with the dot at the end. Since the dot is at the
end, the action for this item is to reduce production 29. The default resolution of such
conflicts is to shift, trying to munch the maximum number of tokens for each reduction.
For this example, that is clearly the correct behavior.

For items which are complete, that is, those that have the dot at the end, the conflicts
file also shows the lookahead symbols that can validly appear at that point.

3.5 Conflict Diagnostics

It is sometimes quite difficult to discover the underlying reason for a conflict in a gram-
mar. Sometimes it may be necessary to trace the path by which the automaton entered
the state with the conflict in order to understand how the conflict is caused.

A /report option gppggives additional diagnostic information so as to make this
task a little easier. In this casegppgproduces a file namedbasename.report.html .
This file is hyperlinked to assist in navigation around the sometimes large data set.

3.5.1 The Report Option

The/reportoption generates a file with a formatted version of the productions, together
with information about each state in theLALR(1) automaton.

The information provided for each state of the automaton is —

* All the “kernel items” for that state. This is a list of all of the productions that
lead to that state, with a dot ‘.’ indicating the position in the production that the
pattern is matched up to.

* For each completed kernel item (that is, for all items where the dot is at the
right-hand end) the list of lookahead tokens that predicate reduction by that pro-
duction.

* The parser actions. This is a list of tokens and the associated actions that the
parser will take. The actions may be “shift token and go to stateN”, or “ reduce
usingrule M ”. In each case the output is hyperlinked to the destination state or
production.

* Non-terminal transitions. This is a list of state transitions to be taken when a
reduction recognizes a non-terminal symbol starting from the current state. The
reduction may start from the current state or from a successor state.

Figure 8 shows the information generated by the option, for state 4 of the automaton
for the fixed version of the tiny grammer in Figure 5. The state information shows
that this state has a single item. There are two shift actions and one reduce action. The
report draws attention to the fact that the reduction in this case is anerasure, that is, a
reduction that derives the empty string.

There are three non-terminal transitions from the state.
When trying to understand the origins of a parser conflict it is sometimes helpful to

know two things about the conflicted state: the path through the states of the automaton
by which the conflicted state has been reached, and a typical prefix that spells out that

3 ERRORS, DIAGNOSTICS AND WARNINGS 28

Figure 8: State information with/report option

State4
Kernel Items

5 ListOpt: Element . ListOpt

Parser Actions
’(’ shift, and go to state 7
blip shift, and go to state 10
EOF reduce using rule 4 (Erasing ListOpt)

Transitions
ListOpt go to state 5
Element go to state 4
Blah go to state 6

path. This is additional information that is provided by the/report option if /verboseis
also specified.

Of course, there may be more than one path leading to any particular state, and
there may be many prefixes that spell out the path.gppgcomputes an example of a
shortest path that leads to the state, and a shortest prefix.

For our example state, the information is shown in Figure 9. In this state the

Figure 9: State information with/report and /verboseoptions

State4
Shortest prefix: Element
State path: 0-> 3

Kernel Items
5 ListOpt: Element . ListOpt

Parser Actions
’(’ shift, and go to state 7
blip shift, and go to state 10
EOF reduce using rule 4 (Erasing ListOpt)

Transitions
ListOpt go to state 5
Element go to state 4
Blah go to state 6

shortest prefix is the non-terminal symbolElement. The state path is only of length 1.
State 0 is the start state. Each state on the state path is hyperlinked so that a browser
can navigate to each of the states to gather more information.

4 ERROR HANDLING IN GPPGPARSERS 29

4 Error Handling in GPPGParsers

4.1 Parser Action

The default action of the parser, when neither a shift nor a reduce is possible, is to
call theyyerror method of the scanner interface (see figure 2). The parser runtime then
discards values from the parser state, value and location stacks until a state is found that
can shift the synthetic “error” token. After the error token has been shifted the parser
checks to see if an ordinary shift or reduce action is then possible given the existing
lookahead symbol. If no such action is possible, the parser discards input tokens until
an acceptable token is found or the input ends.

In the event that no state on the parser stack can shift an error token and the stack
becomes empty, or if the input ends while discarding tokens, theParsemethod returns
false.

Syntactic error recovery sets a boolean flag which prevents cascading calls toyyer-
ror. This flag is not cleared until three input tokens have been shifted without further
syntactic errors resulting. This constraint does not apply to the reporting of anyseman-
tic error messages that are explicit in semantic actions.

In cases where it is certain that error recovery has succeeded a semantic action may
clear the flag explicitly by a call to the built-in parser methodyyerrok(). As well, the
lookahead token may be explicitly discarded in a semantic action by calling the built-in
parser methodyyclearin().

4.2 Overriding the Default Error Handling

As noted, the parser will callyyerror in case of errors. If the scanner overrides the
empty implementation inAbstractScannerthen that method may construct a suitable
error message. It is useful to note that error recovery is attempted because the next input
symbol is not a possible lookahead for either a shift or a reduce action. It is always the
case that the input symbol that blocked progress is the symbol corresponding to the
scanner’s currentyylvalandyyllocat the moment thatyyerror was called.

The default mechanism suffices for simple applications, but there are options for
improved functionality. For example in many applications it is desired that alist of
errors be constructed with associated text spans pointing into the input text.

The alternative strategy for constructing error messages is to leaveyyerror empty,
and place explicit calls to an error handler in the semantic actions of productions that
mention the error token. Such calls to the error handler will be able to make good
use of the automatic location tracking mechanisms of the parser to provide information
for the error handler. For example, in the case of a missing member of some kind of
paired construct the semantic action should have access to the location information of
the current lookahead symboland the symbols whose pair was expected.

Error reporting based around an error handler object should also select the error
message by an ordinal number to allow for easy localization of the message text. Fi-
nally, the error handler needs to be callable from the semantic actions of the parser (and
other semantic checking code) and by the scanner.

In use, the application will create an instance of itsErrorHandlerclass. A reference
to the error handler object is either directly visible to the scanner or is copied to a field
in the scanner. The scanner and parser will then be able to interleave error messages in
the error handler buffer.

5 ADVANCED TOPICS 30

5 Advanced Topics

5.1 Runtime Shift-Reduce Engine

All gppg-generated parsers use precisely the same generic code to implement the shift-
reduce parsing algorithm. The concrete parser class thatgppggenerates supplies type
arguments to the generic object constructor, and also allocates and initializes the pars-
ing tables.

There are two ways that a parser may access this invariant code. The shift-reduce
engine is distributed as the strongly named component “QUT.ShiftReduceParser.dll”,
or the source file “ShiftReduceParserCode.cs” may be added to the project that hosts
the parser.

5.1.1 Using the RuntimeDLL

“QUT.ShiftReduceParser.dll” defines the following public types – theAbstractScanner
class shown in figure 2, theIMerge interface of figure 3, theLexLocationtype of fig-
ure 4 and the mainShiftReduceParserclass.

The only public member of the main class is the no-argParsemethod, but the
component exposes a number of protected methods that the generated parser class uses
to initialize the parsing tables. There are a couple of other classes that are exposed to
the outside, so that the semantic actions of the parser may access the interior of the
push-down stacks using the “$n” and “@n” forms.

The runtime component is strongly named, and is both signed and versioned. This
allows the assembly to be placed in the.NET fusion cache, avoiding a potential ver-
sioning problem. Applications built using a reference to this assembly will only link to
precisely this version.

Since the source of the component is distributed withgppg, users who need to
modify the behavior of the component can do so, but will have to leave the assembly
unsigned. In order to create a version of the component with public types the code
must be compiled with theEXPORT_GPPGconditional compilation symbol defined.
Without the symbol, the types are private.

5.1.2 Using the Source Code File

Applications that wish to have the simplest possible deployment strategy may choose
to incorporate the code of the shift-reduce engine into the main application assembly.

All of the code of the runtime engine is distributed in the single source file “Shift-
ReduceParserCode.cs”. If this code is included in a project the classes of the engine
will, by default, haveinternal accessibility.

Here are two distinct, but sensible, use scenarios —

* The parser and the shift-reduce engine code are placed in the main application
assembly. The parser specification should declare “%visibility internal ”,
so neither the parser nor the runtime engine are publicly visible.

* The parser and the shift-reduce engine code are placed in the same assembly,
but are separate from the host application assembly. If the parser specification
declares “%visibility public ”, then the base class must be public also. This
requires compilation with theEXPORT_GPPGsymbol defined. Alternatively,
both classes have internal visibility, with the application accessing the parser
object via a public wrapper class.

5 ADVANCED TOPICS 31

5.2 Applications with Multiple Parsers

Applications that use multiple parsers have an added dimension of choice in their con-
figuration. The most obvious configurations might be —

* Each parser in a separate assembly, possibly shared with the associated scanner.

* Multiple parsers in the same assembly, but separate from the assembly of the
host application.

* Multiple parsers in the same assembly, shared with the host application.

Parser specifications define the enclosing namespace of the parser, and are able to over-
ride the default names of the parser class, the token enumeration, the scanner base class,
the semantic value type and the location type. The default public visibility of the “ex-
ported” types may also be changed.

5.2.1 Parsers in Separate Assemblies

If each parser is placed in a separate assembly, each with its own scanner, then the
design is relatively unconstrained.

For example, each of the assemblies could declare a different namespace, with all of
the scanner and parser code encapsulated inside. The visibility and all type names could
be left at the default values, and no name-clashes would occur. Each of the assemblies
might access the same shift-reduce library assembly, avoiding code duplication.

However, a better design would remove unnecessary visibility of the internal parser
and scanner types. In this case, the visibility of all of thegppg-defined types should be
restricted tointernal . Each assembly would need a handwritten, public wrapper so
the application could initialize and call the parser, and receive results in return. With
this configuration the default type-names could be retained, and the namespace could
even be shared across the multiple assemblies (although code clarity might be aided by
judicious renaming of types).

5.2.2 All Parsers in a Shared Assembly

If all of the parsers and their associated scanners are to be placed in the same assembly,
then there are two ways of avoiding name-clashes.

If all of the scanners and parsers reside in the same namespace, then the distinct
visible types must uniquely named. For the parsers, the following must have distinct
names: the parser class, the scanner base class and the token enumeration. The seman-
tic value types and location types must be uniquely named, unless they are indeed the
same type. For the scanners, the token and scanner base types will be distinctly named
by the parsers, and the scanner classes must be distinctly named. With this configura-
tion the scanners mustnot embed their buffer code, but must share a single, invariant
copy.

If the scanners and parsers reside in separate namespaces then the default naming
of the types will not cause any problem, although the types might still be differently
named in the interests of code comprehensibility.

With a shared assembly it is possible to embed theQUT.Gppgnamespace and share
the source code of the shift-reduce parser thus avoiding code duplication. Of course,
using the shift-reduceDLL also avoids code duplication.

6 NOTES 32

5.2.3 Single-Assembly Applications

If multiple parsers and scanners share a single assembly with their host application,
then all the considerations of the previous section apply. However, in this case all the
parser and scanner types should have internal visibility only.

If it is a design goal to deploy the application as a single assembly and minimize the
memory footprint, then the shift-reduce parser source code should be included, with its
default internal visibility.

5.3 Multiple Parser Instances

Some applications require multiple instances of the same parser, perhaps running on
separate threads.gppg-generated parsers are suitable for such applications as the
parsers are thread-safe. All parser state is held within its own instance object.

There is no facility to reset the parser state, since this would require some kind of
facility to reset the user-defined error-handler and scanner objects at the same time. If
an application needs to reset a parser it should create a new parser instance.

From version 1.4.0, the creation of parser instances is very much faster, as only a
single parsing table is constructed, and is shared between all instances.

5.3.1 Sharing Parser Tables

When the parser class is first loaded, a single set of tables is constructed and stored
in a static variable of the parser class. WheneverShiftReduceParser.Parseis called a
reference to the static tables is copied into theShiftReduceParserbase-class object.

Note that the tables must be held in a static variable of theParserclass. Every in-
stance of a particular parser class requires an identical parsing table. Howeverdifferent
parser classes, with different tables, may share the same base class if they instanti-
ate the same type parameters for the underlying genericShiftReduceParserclass. Thus
each parser instance must pass a copy of the shared table to its own base-class instance.

6 Notes

6.1 Copyright

Gardens Point Parser Generator (gppg) is copyright c© 2005–2010, Wayne Kelly, Queens-
land University of Technology. See the accompanying file “GPPGcopyright.rtf ”.

6.2 Bug Reports

Gardens Point Parser Generator (gppg) is currently being maintained and extended by
John Gough. The best way to report bugs or make feature requests is to use the issues
tab on thegppgpage onCodePlex.

7 Examples

The distribution contains two simple, related examples. One is a simple integer cal-
culator, the other calculates real numbers and illustrates several additional grammar
features. It should be noted that bothgppgandgplexusegppg-generated parsers, so
these applications provide two additional, complex examples.

7 EXAMPLES 33

7.1 Integer Calculator

The fileCalc.ycontains the specification for a simple integer calculator. The calculator
can run with a file as input or, if run without arguments, reads standard input.

The specification contains a simple scanner methodyylexin the user code section.
Notice that the parser detects the first digit of a number and sets the number base to
octal if the first digit is zero. There is a predefined array of 26 integers, which are used
to store the values for variables named by a single alphabetic character. When there is
a used occurence of a variable name in an expression the value is retrieved by indexing
into the array.

The specification is very simple, and uses the default semantic value type, integer.
The default is sufficient to hold character values as well as the result of intermediate
computations when expressions are evaluated. The second example uses a richer struc-
ture. Note the use of the synthetic token “UMINUS” so that the ‘–’ operator may have a
different precedence when used as a unary operator.

7.1.1 Running the Program

The parser is generated by the command —

D:\work> gppg /nolines calc.y > calc.cs

In this and subsequent examples, user input is set in a bold, slanted, mono-spaced font.
Program generated output is shown in plain typewriter font.

There are no errors or warnings and the generated parser,calc.csmay be compiled
with the command line compiler using the command —

D:\work> csc /r:QUT.ShiftReduceParser.dll calc.cs

The parser references the base classes in the runtime componentShiftReduceParser.
For the above command this is presumed to be in the working directory.

Alternatively, a single-assembly version of the application may be built using the
ShiftReduceParsersource code, using the command —

D:\work> csc ShiftReduceParserCode.cs calc.cs

The application may be run from the command line. Here is a typical input session —

D:\work> Calc
c = 34
s = 13
26 * c / s
68
s = 013
26 * c / s
80
ˆC

Notice that the second value that is assigned to the variables has been interpreted as
octal, because it starts with a zero digit.

The program continues to evaluate expressions until it is forcibly terminated by an
input of “ˆC ”.

7 EXAMPLES 34

7.2 Real Number Calculator

The real number calculator is based on the integer version, but illustrates the use of a
more complicated semantic value type. The source file for this example is included in
the distribution asRealCalc.y

As with the first example, there is a 26-long array that stores the values of alpha-
betically named variables. In this case the values are real numbers stored as floating
point double data. The semantic values of expressions are also floating point values.
Nevertheless,yylexstill passes its semantic values to the parser character by character.
The file RealCalc.ydeclares the semantic value type using the “%union ” construct,
as seen in Figure 10. As described in Section 2.3.5, this semantic value type will be

Figure 10: Start ofRealCalcspecification

%union { public double dVal;
public char cVal;
public int iVal; }

%token <iVal> LETTER
%token <cVal> DIGIT

%type <dVal> expr
...

implemented bygppgas aC#struct.
The figure also illustrates the use of the “%type ” keyword so that the semantic

actions do not have to explicitly select the appropriate field of the struct. We also
illustrate the use of the optionalKind construct in the “%token ” declaration to declare
that DIGIT token has achar semantic value returned in thecVal member,LETTER
token has anint semantic value returned in theiVal member.

The semantic action for the first production of the symbolnumberis called when
the first digit of a number is recognized. Figure 11 shows the relevant production
rules. The action creates a new string-builder object and appends the first digit. Each
subsequent digit is appended to the buffer, as are any decimal points that are discovered
along the way. The scanner does not try to check on the legality of any input numbers,
although that would be simple enough to do with agplex-generated scanner. Instead,
the semantic action attached to the completion of number recognition takes the string
from the string-builder and submits it to theSystem.Double.Parsemethod. In the event
that an illegal number is entered as input,Parsethrows an exception which is caught
by its caller and converted into a call ofyyerror.

7.2.1 Running the Program

The parser is generated by the command —

D:\work> gppg /nolines RealCalc.y > RealCalc.cs

As before, user input is set in a bold, slanted, mono-spaced font. Program generated
output is shown in plain typewriter font.

There are no errors or warnings and the generated parser,RealCalc.csmay be com-
piled with the command line compiler using the command —

7 EXAMPLES 35

Figure 11: Extract fromRealCalcsemantic actions

number : digit {
buffer = new StringBuilder ();
buffer.Append($1);

}
| number digit {

buffer.Append($2);
}

| number ’.’ digit {
buffer.Append(’.’);
buffer.Append($3);

}
;

expr : ... // Other productions for expr
| number

{
try {

$$ = double .Parse(buffer.ToString());
} catch (FormatException) {

Lexer.yyerror(
"Illegal number \" {0}\"" , buffer);

}
}

;

D:\work> csc /r:QUT.ShiftReduceParser.dll RealCalc.cs

Alternatively, the application may embed the shift-reduce library code —

D:\work> csc ShiftReduceParserCode.cs RealCalc.cs

The application may be run from the command line. Here is a typical input session —

D:\work> RealCalc
RealCalc expression evaluator, type ˆC to exit
c = 34
s = 13
26.2 * c / s
68.5230769230769
s = 13.0.0
Illegal number "13.0.0"
ˆC

8 APPENDIX A: GPPGSPECIAL SYMBOLS 36

8 Appendix A: GPPGSpecial Symbols

8.1 Keyword Commands

Keyword Meaning
%defines gppgwill create a “basename.tokens” file defining the token enu-

meration that the scanner will use. The scanner does not need
this text file, but it is useful for other tools.

%left this marker declares that the following token or tokens will have
left associativity, that is,a•b•c is interpreted as(a•b)•c.

%locations this marker is ignored in this version: location tracking is always
turned on ingppg.

%namespace this marker defines the namespace in which the parser class will
be defined. The namespace argument is a dotted name.

%nonassoc this marker declares that the following token or tokens are not
associative. This means thata•b•c is a syntax error.

%output allows the output stream to be redirected to a specified, named
file. See section 2.2.

%partial this marker causesgppgto define aC# partial class, so that the
body of the parser code may be placed in a separateparse-helper
file.

%parsertype this marker allows for the default parser class name, “Parser”, to
be overridden. The argument must be a validC# simple identi-
fier.

%prec this marker is used to attach context-dependent precedence to an
occurrence of a token in a particular rule. This is necessary if the
same token has more than one precedence. See section 2.4.2 for
further detail.

%right this marker declares that the following token or tokens will have
right associativity, that is,a•b•c is interpreted asa•(b•c).

%scanbasetype this marker defines the name of the scanner base class, over-
riding theScanBasedefault. The argument must be a validC#
identifier. (Only applies to the/gplexoption.)

%start this marker allows the goal, (start) symbol of the grammar to be
specified, instead of being taken from the left-hand-symbol of
the first production rule.

%token declares that the following names are tokens of the lexicon.
%tokentype this marker allows for the default token enumeration class name,

“Tokens”, to be overridden. The argument must be a validC#
simple identifier.

%type the form “%type < member> non-terminal list”, wheremem-
ber is the name of a member in a union declaration, declares that
the following non-terminal symbols set the value of the nomi-
nated member.

Table continues on next page...

8 APPENDIX A: GPPGSPECIAL SYMBOLS 37

Keyword Commands Continued ...

Keyword Meaning
%union marks the start of a semantic value-type declaration. See sec-

tion 2.3.5 for more detail.
%using this marker adds the given namespace to the parser’s using list.

The argument is a dotted name, in general.
%visibility this marker sets the visibility keyword of the token enumeration

and the semantic value-type struct. The argument must be a valid
C#visibility keyword. The default is public.

%valuetype a synonym forYYSTYPE, deprecated.
%YYSTYPE this marker declares the name of the semantic value type. The

default isint.
%YYLTYPE this marker declares the name of the location type. The default

is LexLocation.

8.2 Semantic Action Symbols

Certain symbols have particular meanings in the semantic actions ofgppgparsers. As
well as the symbols listed here, the scanner will also define accessible symbols. Those
for gplex-generated scanners are given in figure 2.

Symbol Meaning
$$ the symbolic location holding the semantic value of the left-

hand-side of the current reduction.
$N the value of theN th symbol on the right-hand-side of the current

reduction.
@$ the symbolic location holding the location span of the left-hand-

side of the current reduction.
@N the location span of theN th symbol on the right-hand-side of

the current reduction.
YYABORT placing this symbol in a semantic action causes the parse method

to return false.
YYACCEPT placing this symbol in a semantic action causes the parse method

to return true.
YYERROR placing this symbol in a semantic action causes the parser to

attempt error recovery. No error message is generated.
YYRECOVERING this Boolean property denotes whether or not the parser is cur-

rently recovering from an error.
yyclearin() placing this method call in a semantic action causes the parser to

discard the current lookahead symbol.
yyerrok() placing this method call in a semantic action asserts that error

recovery is complete.

9 APPENDIX B: SHIFT-REDUCE PARSING REFRESHER 38

9 Appendix B: Shift-Reduce Parsing Refresher

9.1 Some Definitions

A grammaris a set of rules that, for a particularsymbol alphabet, determines which
ordered sequences of symbols form validsentencesin the language that the grammar
specifies.

Parsersare automata that recognize the valid sentences of a given grammar. Given
an arbitrary symbol sequence as input, a parser must answer yes or no according to the
legality or otherwise of that sequence.

Phrase-structured grammarsdeclare a set of syntactic rules that recognize frag-
ments of a sentence as belonging to particularsyntactic categories. In phrase structured
grammars for natural languges the syntactic categories correspond to concepts such as
“noun”, “verb” and “adjectival clause of reason”. In a programming language syntactic
categories might be “assignment statement”, “variable declaration” and so forth.

Among all classes of phrase-structured grammars the most useful for formal lan-
guages are thecontext-free grammars. The syntactic rules of a context free grammar
have the special form N→S, where N is a syntactic category, andS is a sequence of
zero or more symbols each of which may denote either an alphabet symbol or a syn-
tactic category. For this example rule we say “Nderives S” or equivalently “Smay be
reducedto N”. We call such rulesproductions. Such rules are context-free because the
sequenceSmayalwaysbe reduced to N, without regard for thecontext, that is, without
regard for what comes before or after the input fragment that corresponds toS.

There is a special member of the set of syntactic categories that we designate as the
goal symbolG. We may generate all the sentences of a language by starting with the
goal symbol and progressively replacing any syntactic categories with the right-hand-
side of a corresponding production rule. When we have a sequence of only alphabet
symbols, that sequence is a sentence in the language. We say the particular choice of
substitution steps hasderived the sentence in the language. Each intermediate state
of the sequence as the substitution steps are carried out is called asentential form.
Until the final substitution is made the sequence is not a sentence, but at all stages it
has theform of a sentence subject only to the expansion of any remaining syntactic
placeholders.

Because of this concept of a derivation terminating when there are only alphabet
symbols remaining we call the alphabet symbolsterminal symbolsof the grammar.
Conversely, the syntactic categories arenon-terminal symbols.

There are two parsing strategies for context-free grammars. One is to start with
the goal symbol and to try to find a sequence of derivation steps that matches up with
the input sequence. Parsers that work this way as calledtop-down parsers. “Recursive
descent” is the most widely used top-down parsing technique.

The second parsing strategy,bottom-up parsing, attempts to match fragments of
the input sequence with the right-hand-sides of production rules. When a fragment is
matched it is replaced by the single, non-terminal symbol of the rule’s left-hand side.
This substitution step is calledreduction.

Shift-reduce parsers, as generated bygppg, implement the matching of production
right-hand sides with the help of a “push-down” stack structure. The input is read
symbol by symbol, and at each step a decision is made whether to push the (terminal)
symbol on the stack, or to recognize the topn symbols on the stack as matching the
right-hand-side of a particular production. If a symbol is pushed on the stack, we have
performed ashift. If a right-hand-side of lengthn is recognized wereduceby popping

9 APPENDIX B: SHIFT-REDUCE PARSING REFRESHER 39

the topmostn symbols from the stack and push the corresponding left-hand-side non-
terminal symbol. If this process leads to the stack holding just the goal symbol a
sentence has been recognized.

It is one of the classic results of computer science that the set of sequences of sym-
bols that indicate the applicability of each reduction rule belong to aregular language.
That is: theviable prefixesof each reduction may be recognized by a finite state ma-
chine (FSA).

The specification for agppgparser declares the production rules of the grammar.
Specifications usually also declare computations that are performed step by step as each
pattern is recognized and the reduction performed. Thesesemantic actionscompute
attributes of the production left-hand-side symbol in terms of the attribute values of the
production right-hand-side symbols.

A gppg-generated parser does not actually maintain a stack of terminal and non-
terminal symbols. Instead is has three stacks to guide its operation. The first stack is
a stack ofparser states, which are integer values. These values are the states of the
FSAthat decides whether to shift or reduce, and if reducing, by which production. The
second stack is the stack of attribute values for the values that would be on the symbol
stack, if there was one. The third stack is a stack of text spans corresponding to the
symbols that would be on the symbol stack, if there was one. This last stack is useful
for semantic actions that require the retrieval of position information or text strings.

9.2 How Shift-Reduce Parsing Works

At each step in the parsing process a shift-reduce parser examines the state on the top
of the state stack, and the identity of the next input symbol. The next input symbol,
fetched from the associatedlexical scanner, is called thelookahead symbol.

Each state of theFSAcorresponds to a particular finite set of partially recognized
production right-hand-sides. These partially recognized rules are calledproduction
itemsof the grammar. Production items are just right-hand-sides annotated with a
“dot” to show how many of the symbols of the rule have been seen so far. The/report
option ofgppggenerates an html file that shows all of the items for each state of the
automaton. Many state have a single kernel item, but others may have several. For an
example of kernel items see the discussion in section 2.4.2.

The runtime representation of each parser state stores a list of actions to be taken
in that state for each possible lookahead symbol. There is also a list showing the next
state value after pushing all the possible terminal or non-terminal symbols.

For any particular combination of top-of-stack state and lookahead symbol the pars-
ing engine may decide to shift, reduce or signal an error.

Shift Action

If a shift is chosen theFSAmakes a transition from the current state to a new state. The
new state is pushed on the state stack. If the scanner has placed any symbol attribute
information in theyylval field this is pushed onto the semantic value stack. Finally, if
the scanner has placed location information in theyylloc field this is pushed onto the
location stack.

9 APPENDIX B: SHIFT-REDUCE PARSING REFRESHER 40

Reduce Action

If the parser chooses a reduction by a particular production, then the following steps
are taken. First, if the production specifies any semantic action then this computation
is performed. If the chosen production hasn symbols in its right-hand-side, then the
semantic action may use the topmostn values of the semantic value and location stacks.

Following the execution of the semantic action, the topmostn elements are popped
from all three stacks. The left-hand-side of the chosen reduction must now be ”pushed”
onto the stack. The preceeding popping of the stack will have exposed a new top-of-
stack state, and the information of that state detemines what the new state will be
following the push of the production left-hand-side non-terminal symbol. At the same
time any semantic value and location information computed by the semantic action are
pushed onto the semantic value and location stacks.

Error Action

If there is no possible reduction or shift action for a given state, lookahead symbol
combination then theyyerror method is called.

Loop Forever

After a shift or reduce action, if the new top of stack state corresponds to the goal
symbol, and the lookahead symbol is “end of input” the parser returns true. Otherwise,
if the lookahead symbol has been consumed by a shift a new input symbol is fetched.

The parser continues by making a new shift-reduce decision based on the new top-
of-state stack state value and the (possibly new) lookahead symbol.

9.3 What Can Go Wrong

Not every context-free grammar can be successfully recognized by agppgparser. This
final section considers some of the things that can prevent successful generation of a
parser.

First, it must be said that some grammars cannot be recognized byanyparser that
does not back-track. Furthermore, there are grammars that define sentences that have
multiple derivations, that is, sentences that are ambiguous. Finally, there are grammars
which inherently require more than one symbol of lookahead to make correct parsing
decisions.

In practice, when a grammar is submitted togppg, or any other shift-reduce parser-
generator, the tool may notify the user of variousconflicts. These arise when the states
of the parser have more than one possible action for some state-lookahead combination.
There are two kind of conflict: ashift-reduce conflictis notified if a particular state has
both a possible shift actionanda possible reduction. The occurrence of a shift-reduce
conflict is not fatal, and by defaultgppgparsers always shift in preference to reducing.
Shift-reduce conflicts are notified to the user so that it may be checked that the default,
shift action does lead to a correct result.

The second kind of conflict is areduce-reduce conflict. Such a conflict arises if
there are two or more production items in the state that signify a possible reduction
action. Reduce-reduce conflicts tend to be more serious, and it is often necessary to
modify a grammar to remove such conflicts to obtain correct behavior.

9 APPENDIX B: SHIFT-REDUCE PARSING REFRESHER 41

gppghas advanced facilities for conflict reporting, and special help for diagnosing
the cause of such conflicts. These are aimed at helping the user to successfully remove
such conflicts. See section 3.4, and section 3.5.

Index
AbstractScannerclass 6, 7

bottom-up parsing38

context-free grammars38
controlling precedence 16

issuing conflict messages 18
precise rules for 17

Declarations 9–15
location type 14
namespace 12
output filepath 12
parser typename 12
parser visibility 12
partial types 14
semantic value type 13
using declarations 14

display string 9, 10

empty production16, 18
erasure. .16, 27
error handler 5, 29

class . 29
error recovery .29
examples

integer calculator 33
real number calculator 34

goal symbol .38
GPLEX . 4
gppg conflict messages 26
gppg error messages 22
gppg special symbols

semantic action symbols.37
specification symbols 36

gppg warning messages 24
grammar .38

IMerge interface20, 30

lexical category8
literal character tokens 10

canonicalization of11
location actions 20

default action 20
empty productions 21

location information 5, 7, 14, 19

default type 7, 20
user-defined types 20

location stackseeparser stacks,
location stack

lookahead symbol39
lookahead token 11, 17, 26
lookahead tokens27

Managed Package Framework. 15
maxParseToken 15
mid-rule actions18
multiple parsers 31

non-terminal symbols 8, 9,38
non-terminating grammar9, 25

diagnostic help 25
non-terminating symbols24

options, command line
all options.4
babel option15
gplex option.7, 8, 13,15
report option 5, 27

parser conflicts
diagnostic help 27
mid-rule actions 18

parser constructor 5, 7
parser stacks 29, 30

location stack 22
state stack.29
value stack 11, 13

parser states .39
Parsers .38
Phrase-structured grammars38
predecenceseetoken precedence
production rules 15–19

reduce . 17,38
reduce-reduce conflict 18, 26,40
regular language39
resetting the parser 32

scanner . 5, 6
using non-gplex scanners 8

semantic actions 19
default action 19

42

INDEX 43

semantic value stackseeparser stacks,
value stack

semantic value type 5, 7
sentences .38
sentential form38
shift . 17,38
shift-reduce conflict 18, 26,40
Shift-reduce parsers38
ShiftReduceParser. 4, 6, 33
state stackseeparser stacks, state stack
symbol alphabet38
syntactic categoriessee also

non-terminal symbols, 9,38

terminal symbols 8,38
token declarations9, 10
token enumeration5

display strings 9, 10
token precedence 11, 16

prec marker 16, 24, 33
tokens file . 6
top-down parsers 11,38

unicode escapes 5, 11, 24
union declaration13, 14, 34
unreachable symbols 9,23

viable prefixes39

YACC. 4, 6, 8, 16
yyclearin . 29
yyerrok . 29
yyerror . 7, 29, 34
yylloc . 7, 20
YYLTYPE. . . .seelocation information
yylval . 6, 7, 10
YYSTYPE. . . . seesemantic value type

	Overview
	Installing GPPG
	Running GPPG
	Using GPPG Parsers
	Outputs
	Scanner Interface
	Instantiating the Parser Object
	Using GPPG Parsers with Non-LEX Scanners

	Input Grammar
	Input Grammar Structure
	Declarations
	Declaring Tokens
	Token Precedence
	Declaring Non-Terminal Symbol Types

	Extensions to the Declaration Grammar
	Declaring an Output Filepath
	Creating a Token Definitions File
	Choosing the Namespace ---
	Naming Types
	Defining a Semantic Value Type
	Choosing the Semantic Value Type Name ---
	Choosing the Location Type Name ---
	Partial Types
	Using Declarations ---
	Colorizing Scanners and maxParseToken
	Colorizing Scanners and Managed Babel

	Production Rules
	Semantic Action Syntax
	Controlling Precedence
	Mid-Rule Actions
	Right-Hand-Side Syntax

	Semantic Actions
	Default Semantic Action

	Location Tracking
	Location Actions
	Default Location Type
	Supplying a Different Location Type
	Special Behavior for Empty Productions

	Errors, Diagnostics and Warnings
	Error Messages
	Non-Terminating Diagnostics

	Warning Messages
	Non-Terminating Grammars
	Parser Conflict Messages
	Reduce/Reduce Conflicts
	Shift/Reduce Conflicts

	Conflict Diagnostics
	The Report Option

	Error Handling in GPPG Parsers
	Parser Action
	Overriding the Default Error Handling

	Advanced Topics
	Runtime Shift-Reduce Engine
	Using the Runtime DLL
	Using the Source Code File

	Applications with Multiple Parsers
	Parsers in Separate Assemblies
	All Parsers in a Shared Assembly
	Single-Assembly Applications

	Multiple Parser Instances
	Sharing Parser Tables

	Notes
	Copyright
	Bug Reports

	Examples
	Integer Calculator
	Running the Program

	Real Number Calculator
	Running the Program

	Appendix A: GPPG Special Symbols
	Keyword Commands
	Semantic Action Symbols

	Appendix B: Shift-Reduce Parsing Refresher
	Some Definitions
	How Shift-Reduce Parsing Works
	What Can Go Wrong

